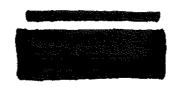
Study 1

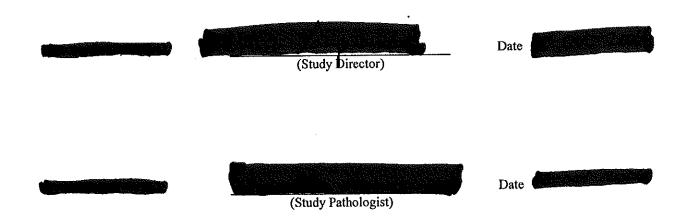
4-Week Oral Toxicity Study in Rats Followed by a 2-Week Recovery Period, March 4, 2011

4-WEEK ORAL TOXICITY STUDY IN RATS FOLLOWED BY A 2 WEEK RECOVERY PERIOD

FINAL REPORT

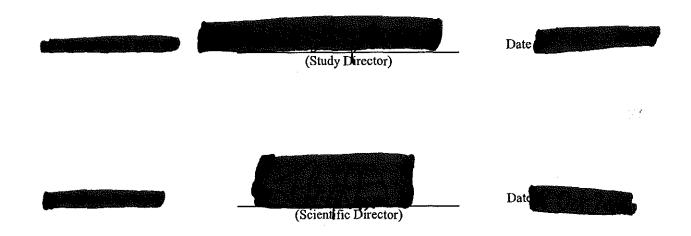

VOLUME I OF II

Total number of pages Volume I: 141 Total number of pages Volume II: 246 Total number of pages: 387



4-WEEK ORAL TOXICITY STUDY IN RATS FOLLOWED BY A 2 WEEK RECOVERY PERIOD

FINAL REPORT


We, the undersigned, were responsible for the preparation of this report.

COMPLIANCE STATEMENT

We, the undersigned, hereby declare that the following report constitutes a true and faithful account of the procedures adopted, and the results obtained in the performance of the study. With the exception of the historical control data, that were not revised by Q.A., all other aspects of the study conducted by were performed in accordance with:

- A. Decreto Legislativo 27 Gennaio 1992 n. 120, Adoption of 88/320/EEC and 90/18/EEC Directives on the inspection and verification of good laboratory practice (G.U. 18 Febbraio 1992 n. 40) and subsequent revisions.
- B. Directive 2004/10/EC of European Parliament and of the Council of 11 February 2004. On the harmonisation of laws, regulations and administrative provisions relating to the application of the principles of good laboratory practice and the verification of their applications for tests on chemical substances.
- C. ENV/MC/CHEM(98)17 OECD principles on Good Laboratory Practice (as revised in 1997).

103

QUALITY ASSURANCE STATEMENT

(Relevant to those aspects of the study conducted by

Study phases monitored by	Quality Assurance Inspections (Day Month Year)				
According to current relevant Standard Operating Procedures	Inspection	Report to Study Director	Report to Company Management		
PROTOCOL CHECK	24.03.2005	24.03.2005	24.03.2005		
STUDY-BASED INSPECTIONS RELATED TO THIS TYPE OF STUDY					
Allocation Dose preparation Dosing (oral) Pre post dose observation Body weight Food consumption Clinical observations Functional observation battery Sensory reactivity to stimuli Blood sampling Urine collection	24.03.2005 01.04.2005 31.03.2005 31.03.2005 07.04.2005 21.04.2005 05.04.2005 22.04.2005 28.04.2005 28.04.2005	29.03.2005 04.04.2005 20.04.2005 22.04.2005 01.06.2005 22.04.2005 07.04.2005 13.05.2005 01.06.2005 29.04.2005	29.03.2005 04.04.2004 22.04.2005 22.04.2005 09.06.2005 22.04.2005 07.04.2005 07.04.2005 13.05.2005 09.06.2005 29.04.2005		

QA inspection regarding Analytical Chemistry, Histology and Clinical Pathology Departments as well as regarding other routine activity not directly related to this study are carried out as process-based inspections. The relevant documentation is kept on file although specific inspection dates are not reported here.

Associated laboratories and support functions are subject to regular facility inspections.

FINAL REPORT

Review of this report by found the reported methods and procedures to describe those used and the results to constitute an accurate representation of the recorded raw data.

Addendum VII Historical control data was not verified by QAU.

17 Oct 2006

1.	SUM	MARY	8
2.	INTR	RODUCTION	11
3.	TEST	Г ITEM	12
4.	MET	HODS	13
•	4.1	Test system	13
	4.1.1	Animal supply and acclimatisation	13
	412	Animal husbandry	13
	413	Allocation to groups	13
	4.2	Treatment	14
		Selection of dose levels	14
	422	Dose levels, group size and identification	14
	423	Administration of test item	14
	4.2.3	Duration of treatment	15
	4.2.4	In vivo observations	15
	4.31	Mortality	15
	43.1	Pre- and post-dose observations (Main groups)	15
	4.3.2	Clinical signs and neurotoxicity assessment (Main groups)	15
	4.3.3	Motor activity assessment (MA) (Main groups)	16
	4.3.4	Body weight	16
	4.3.3	Food consumption (Main groups)	16
	4.5.0	Clinical pathology investigations (Main groups)	16
		Haematology	17
	4.4.1	Clinical chemistry	17
	4.4.2	Urinalysis	17
		Toxicokinetics (Satellite group)	18
	4.5	Terminal studies	10 19
	4.6	Euthanasia	10 10
	4.0.1	Eunanasia	10
	4.6.2	Necropsy (Main groups)	1 <i>)</i> 10
	4.6.3	Organ weights (Main groups)	17 10
	4.6.4	Tissues fixed and preserved (Main groups)	19 10
	4.6.5	Histopathological examination	13 20
		Annex 1 of study protocol	20
	4.7	Statistical analysis	∪∠∠∪
	4.8	Deviations from protocol	1 کے ۔۔۔۔۔۔۔۔ 2 ا
	4.9	Archives	
5.		ULTS	
	5.1	Mortality	
	5.2	Pre- and post-dose observations and weekly clinical signs	22
		n field measurements)	22
	5.3	Sensory reaction to stimuli and motor activity	ZZ
	5.4	Body weight	22
	5.5	Food consumption	22
	5.6	Haematology	23
	5.7	Clinical chemistry	23
	5.8	Urinalysis	24
	5.9	Toxicokinetic analysis	24

Contents - Volume I

	P	age
	5.10 Organ weights	24
	5.11 Macroscopic observations	
	5.12 Microscopic observations	
6.	CONCLUSION	
0.	CONCEDENCE	٠,
	Figures	
	11941-00	
	RE 1 - Group and cage arrangement on battery	
FIGU	RE 2.1 - Body weight versus day of study - Males	31
FIGU	RE 2.2 - Body weight versus day of study - Females	32
FIGU	RE 3 - Plasma levels	33
	Tables	
TABI	E 1.1 - Clinical signs - During treatment - Group incidence	88
	E 1.2 - Clinical signs - During recovery - Group incidence	
	E 2.1 - Motor activity - At the end of treatment - Group mean data	
	E 2.2 - Motor activity - At the end of recovery - Group mean data	
	E 3.1 - Body weight (g) - During treatment - Group mean data	
	E 3.2 - Body weight (g) - During recovery - Group mean data	
	E 4.1 - Body weight change (g) - During treatment - Group mean data	
	E 4.2 - Body weight change (g) - During recovery - Group mean data	
	.E 5.1 - Haematology - At the end of treatment - Group mean data	
	E 5.2 - Haematology - At the end of recovery - Group mean data	
	E 6.1 - Clinical chemistry - At the end of treatment - Group mean data	
TABL	E 6.2 - Clinical chemistry - At the end of recovery - Group mean data	30
	E 7.1 - Urinalysis - At the end of treatment - Group mean data	
	.E 7.2 - Urinalysis - At the end of recovery - Group mean data	
	E 8.1 - Terminal body weight (g) - Final sacrifice - Group mean data	
	.E 8.2 - Terminal body weight (g) - Recovery sacrifice - Group mean data9	
	E 9.1 - Absolute organ weights (g) - Final sacrifice - Group mean data	
	E 9.2 - Absolute organ weights (g) - Recovery sacrifice - Group mean data	
	.E 10.1 - Relative organ weights - Final sacrifice - Group mean data11	
	.E 10.2 - Relative organ weights - Recovery sacrifice - Group mean data12	
	E 11.1 - Macroscopic observations - Unscheduled deaths - Group incidence	
	E 11.2 - Macroscopic observations - Final sacrifice - Group incidence	
	E 11.3 - Macroscopic observations - Recovery sacrifice - Group incidence	
	E 12.1 - Microscopic observations - Main phase - Group incidence	
TABL	E 12.2 - Microscopic observations - Recovery phase - Group incidence14	1

Contents – Volume II

Page

Appendices

APPENDIX 1 - Mortality - Individual data	3
APPENDIX 2.1 - Neurotoxicity assessment - Sensory reaction to stimuli - At the end of treat	ment
- Individual data	4
APPENDIX 2.2 - Neurotoxicity assessment - Sensory reaction to stimuli - At the end of reco	very
- Individual data	8
APPENDIX 3.1 - Motor activity - At the end of treatment - Individual data	12
APPENDIX 3.2 - Motor activity - At the end of recovery - Individual data	14
APPENDIX 4.1 - Body weight (g) - During treatment - Individual data	16
APPENDIX 4.2 - Body weight (g) - During recovery - Individual data	20
APPENDIX 5.1 - Body weight change (g) - During treatment - Individual data	22
APPENDIX 5.2 - Body weight change (g) - During recovery - Individual data	26
APPENDIX 6.1 - Food consumption (g/animal/day) - During treatment - Cage data	28
APPENDIX 6.2 - Food consumption (g/animal/day) - During recovery - Cage data	30
APPENDIX 7.1 - Haematology - At the end of treatment - Individual data	32
APPENDIX 7.2 - Haematology - At the end of recovery - Individual data	38
APPENDIX 8.1 - Clinical chemistry - At the end of treatment - Individual data	44
APPENDIX 8.2 - Clinical chemistry - At the end of recovery - Individual data	50
APPENDIX 9.1 - Urinalysis - At the end of treatment - Individual data	56
APPENDIX 9.2 - Urinalysis - At the end of recovery - Individual data	64
APPENDIX 10.1 - Absolute organ weights (g) - Final sacrifice - Individual data	72
APPENDIX 10.2 - Absolute organ weights (g) - Recovery sacrifice - Individual data	76
APPENDIX 11.1 - Relative organ weights - Final sacrifice - Individual data	80
APPENDIX 11.2 - Relative organ weights - Recovery sacrifice - Individual data	84
APPENDIX 12 - Macroscopic and microscopic observations - Individual data	88
Addenda	
ADDENDUM I - Computer abbreviations and symbols	150
ADDENDUM II - Abbreviations of neurotoxicity tests	152
ADDENDUM III - Analytical method and validation report for formulation analysis and form	nulation
analysis results	154
ADDENDUM IV -Analytical method and validation report for toxicokinetic analysis and	
toxicokinetic analysis results	169
ADDENDUM V - Certificate of analysis	213
ADDENDUM VI - Study protocol	215
ADDENDUM VII - Clinical pathology report	232
ADDENDUM VIII - Historical control data	234
A SAMP AND THE TARREST TO AND THE SAME TO A SAMP AND THE SAMP AND	

1. SUMMARY

1.1 The oral toxicity of the whole when given by daily administration to rats, has been investigated over a period of 4 consecutive weeks and recovery from any potential treatment-related effects over a period of 2 consecutive weeks.

Three groups, each of 5 male and 5 female Sprague Dawley rats, received the test item by gavage at dosages of 0.3, 0.8 and 2.0 mg/kg/day for 4 consecutive weeks. A fourth similarly constituted group received the vehicle alone (distilled water) and acted as a control. Five additional animals for each sex were included in the high and control groups for recovery assessment. Blood samples were also taken following a single dose from a satellite group of 9 males and 9 females, dosed at 2.0 mg/kg/day, for toxicokinetic evaluations.

1.2 Mortality

One female animal dosed at 0.3 mg/kg/day was found dead on Day 23 of treatment. This death was not considered treatment-related.

1.3 Pre- and post-dose observations and weekly clinical signs

No signs were observed at daily post-dose observations.

Detailed clinical signs with neurotoxicity assessment did generally not show any signs which could be correlated to the treatment with the test item.

1.4 Motor activity and sensory reaction to stimuli

A dose-related reduction of grip strength was observed in the treated males and in the midand high dose females at the end of treatment when compared to controls. No significant differences were observed at evaluations performed at the end of recovery.

Motor activity measurements performed at the end of treatment and recovery periods did not show changes which could be ascribed to treatment.

1.5 Body weight

Body weights showed statistically significant reductions in the high dose animals from Day 22 up to the end of the treatment period when compared to controls. Terminal body weight was also significantly reduced in the high dose animals. These reductions were still evident up to the end of the recovery period.

1.6 Food consumption

A reduction of food intake was observed at the end of the treatment phase in the high dose males. Food intake was still significantly reduced at the end of the first week of recovery and, in the males, also at the end of the recovery period.

1.7 Haematology

A decrease in white blood cells (lymphocytes in both sexes, neutrophils in the males) was observed in the high dose animals and in the mid-dose females. In addition, the prothrombin time was slightly increased in the high dose males. These changes showed a trend for recovery after the treatment-free period.

No other alterations in the haematological parameters were observed.

1.8 Clinical chemistry

Dose related changes observed at the clinical chemistry investigations performed during week 4 of treatment revealed alteration of liver function in the high dose males and, to a lesser extent, in two mid-dose males (increases in hepatic markers alkaline phosphatase, alanine aminotransferase, aspartate aminotransferase and total bilirubin, decrements in protein, globulin and albumin). A reversibility of these changes was observed for the aminotransferase enzymes. No significant hepatic marker alterations were observed in females.

Urea plasma levels were increased in high dose animals, while creatinine and inorganic phosphorus showed a decrement in the same group.

At the end of the recovery period, no complete reversibility of such changes was observed. No other changes of biological significance were observed.

1.9 Urinalysis

No alterations in urine were observed which could be attributed to treatment.

1.10 Toxicokinetic analysis

Detectable plasma levels of the test item were measured between 2 and 216 hours after dosing in the animals dosed at 2.0 mg/kg. Maximum plasma levels (C_{max}), calculated separately for each of the were within the range of 124.3 – 4545.4 ng/ml in the males and 160.7 – 4581.3 ng/ml in the females. In both cases, showed the highest concentration.

 C_{max} was generally measured 24 hours after dosing (t_{max}). Athough in some fractions measured in the females different t_{max} were obtained. The estimated half-life ($t\frac{1}{2}$) was comprised in the range of 201 - 544 hours for males and 39 - 2185 hours for females. The AUC was calculated to be from 22516 to 791984 ng/ml·h in the males and 26563 to 584697 ng/ml·h in the females.

 $AUC_{(inf)}$ was calculated to be in the ranges of 57915 - 3249932 and 44431 - 877949 ng/ml·h in males and females, respectively.

1.11 Organ weights

Dose-related, statistically significant increases in absolute and relative liver weights were noted in all treated males and in mid- and high dose females at the end of the treatment period. This increase was still present at the end of recovery. In addition, statistically significant reductions of the absolute and relative weights of the spleen and thymus and increases of the relative weights of the thyroid, kidneys, epididymides and testes were seen in the high dose animals at the end of treatment. All these organs (spleen, kidneys, epididymides, testes, thyroid and thymus) still showed differences from controls at the end of recovery.

1.12 Macroscopic observations

The most relevant changes, observed at necropsy of the early decedent animal, were dark red contents in the abdominal cavity and 2 dark, ruptured areas in the liver.

Pale colour of the liver, sometimes accompanied by swollen shape of the organ, was reported in mid- and high dose males and 1 high dose female. Decreased size of the thymus and transparent seminal vesicles were also seen in high dose males.

Enlargement of the liver and renal pelvis dilatation was recorded in 2/5 treated males at the end of the recovery phase.

1.13 Microscopic observations

Multifocal, mild haemorrhages were reported in the liver of the early decedent animal. This finding, along with the macroscopic observation in the abdominal cavity, suggests that this death could be considered spontaneous or accidental in origin.

Liver: hepatocytic hypertrophy was observed in all high dose group animals, all mid-dose males and 4/5 low dose males. This finding showed mainly a panlobular distribution in the high dose group males, while it was limited to the centrilobular, mid-zonal areas in the remaining main phase animals.

Lungs: aggregation of alveolar macrophages was seen in the lungs of 4/5 males and 2/5 females from the high dose group.

Thymus: slight to moderate atrophy was observed in 3/5 males and in 1 female from the high dose group.

Only a partial remission of the changes considered related to the administration of the test item was observed following the 2-week recovery period.

Liver: hepatocytic hypertrophy was still evident in all treated animals.

Lungs: instances of focal aggregation of alveolar macrophages were seen in the lungs of 1 treated male and 1 treated female.

Thymus: moderate atrophy was observed in 1 treated male.

Colloid depletion was observed in the seminal vesicles of 3/5 high dose group males. Hepatocytic necrosis was observed in 2/5 high dose and 1/5 intermediate dose males in the main phase and in 1 treated male from the recovery group. The above changes, as well as the moderate chronic inflammation reported in the liver of 1 high dose male killed at termination of the treatment phase, were considered to be unspecific, possibly linked to the general condition of the treated animals and spontaneous in origin.

The remaining findings reported in the animals sacrificed after completion of the scheduled test periods and in the unscheduled dead animal were considered to be incidental or spontaneous in origin.

1.14 Conclusions

On the basis of the above results, signs of an evident toxic effect of the test item were seen at the 2 higher dose levels (0.8 and 2.0 mg/kg/day). Most of the observed effects were not reversible over a 2 week recovery period in the high dose animals. The findings in the liver, observed at all the doses were a clear indication of a toxic effect of the test item to this organ. Males were clearly more sensitive than females. Also the toxicokinetic half-life values were higher in males than females.

Effects on the main target organ, the liver, although at a lower incidence when compared to those observed at the higher dose levels, were also observed in the males of the low dose level (0.3 mg/kg/day). Besides changes in the liver, only minor effects were observed at 0.3 mg/kg/day in the males. The majority of these effects were not considered adverse, as they were slight, often not dose-related and within the normal range of historical control data. The hepatocytic hypertrophy could be suggestive of an adaptive change. However, the lack of recovery over a 2 week treatment-free period, seen in the high-dose animals, may be an indication of other changes occurring in the liver, not detectable through the standard microscopic examination. Therefore, none of the dose levels investigated may be considered either a No Observed Effect Level (NOEL) or a No Observed Adverse Effect Level (NOAEL) in this study for males. On the contrary, females appeared to be less sensitive than males. At 0.3 mg/kg/day no adverse effects were observed. Therefore this dose can be considered a No Observed Adverse Effect Level (NOAEL) for the females.

2. INTRODUCTION

The purpose of this study was to evaluate the toxicity of when administered daily to rats by the oral route for 4 consecutive weeks, and to investigate possible recovery from any treatment-related effects, during a 2 week recovery period.

The study design was in agreement with the procedures described in OECD Guideline No. 407 adopted on 27 July 1995 and with those described by Japanese METI (Ministry of Economy, Trade and Industry), of 13 July 1974 and subsequent revisions.

The Sprague Dawley rat was chosen because it is accepted by many regulatory authorities and there is ample experience and background data on this species and strain.

The oral route was selected as it is a possible route of exposure of the test item in man. The dose levels of 0.3, 0.8 and 2.0 mg/kg/day were defined in agreement with the Sponsor based on information from preliminary studies.

Each main group comprised 5 male and 5 female rats. Control and high dose groups included 5 additional animals per sex that were killed after 2 weeks of recovery. One satellite group for toxicokinetics comprised 9 male and 9 female animals.

No treatment was given during the recovery period.

The animals were assigned to treatment groups on 24 March 2005 and dosing began on 31 March 2005. Necropsies of main groups were completed by 29 April 2005 and recovery groups by 12 May 2005.

The protocol is presented in Addendum VI.

The study was carried out at:

The study was conducted on behalf of:

3. TEST ITEM

Information received from the Sponsor indicated the following:

Name :

Alternative name Batch Number of the

precursor acid : 32230N
Batch Number : 90409/86-I
CAS Number :

Purity :

Expiry date : 1st January 2015

Received from : 14th January 2005

Amount received : Approximately 300 grams

Description

Container : Colourless glass bottle Storage at : Ambient conditions

eference number: 9372

The determination of the identity, strength, purity, composition and stability of the test item was the responsibility of the Sponsor.

A sample of the test item was taken before commencement of treatment and will be stored in the archives at a sample of 10 years prior to disposal.

The test item was dissolved in distilled water to give the required concentrations of 0.03, 0.08 and 0.2 mg/ml.

Prior to commencement of treatment the proposed formulation procedure was checked by chemical analysis to confirm that the method was acceptable. Stability was found to be equivalent to 6 days at room temperature following analysis. Samples of the formulations prepared in weeks 1 and 4 were analysed to check the concentration. Results of all the analyses were within the limits of acceptance (95-105%). Results of these analyses, carried out by the Analytical Chemistry Department at a presented in Addendum III of this report.

4. METHODS

4.1 Test system

4.1.1 Animal supply and acclimatisation

A total of 90 Hsd Sprague Dawley rats (45 males and 45 females), 27-29 days old and within a weight range of approximately 75-99 g, were obtained from Siightly outside the range indicated in the protocol.

After arrival, on 11 March 2005, the weight range for each sex was determined and the animals were temporarily identified within the cage by means of a coloured mark on the tail. A health check was then performed by a veterinarian.

An acclimatisation period of approximately 2 weeks was allowed before the start of treatment, during which time the health status of the rats was assessed by thorough observations.

4.1.2 Animal husbandry

The animals were housed in a limited access rodent facility. Animal room controls were set to maintain temperature and relative humidity at $22^{\circ}\text{C} \pm 2^{\circ}\text{C}$ and $55\% \pm 15\%$ respectively; actual conditions were monitored, recorded and the records retained. There were approximately 15 to 20 air changes per hour and the rooms were lit by artificial light for 12 hours each day.

The animals were housed up to 5 of one sex to a cage, in clear polycarbonate cages measuring 59x38.5x20 cm with a stainless steel mesh lid and floor (Example 20 of the cage tray held absorbent paper which was inspected and changed at least 3 times a week.

Drinking water was supplied *ad libitum* to each cage via water bottles, except as noted in section 4.4.

A commercially available laboratory rodent diet () was offered *ad libitum* throughout the study, except as noted in section 4.4.

There was no information available to indicate that any non-nutrient substance likely to influence the effect of the test item was present in the drinking water or the diet. Records of analyses of water and diet are kept on file at the substance likely to influence the effect of the test item was present in the drinking water or the diet. Records of analyses of water and diet are kept on file at the substance likely to influence the effect of the test item was present in the drinking water or the diet. Records of analyses of water and diet are kept on file at the substance likely to influence the effect of the test item was present in the drinking water or the diet.

Dated and signed records of activities relating to the day to day running and maintenance of the study in the animal house were recorded in a Study Day Book.

4.1.3 Allocation to groups

On the day of allocation (7 days prior to the start of treatment) all animals were weighed. Animals at the extremes of the weight distribution and/or any animal showing signs of ill health were excluded to leave the required number of animals. The rats were allocated to the 5 groups by computerised stratified randomisation to give approximately equal initial group mean body weights.

Individuals were uniquely identified within the study by sex, tattoo on the hind feet, and ear notch and housed up to 5 of one sex per cage.

The cages were identified by a label and recording the study number, animal numbers and details of treatment.

The arrangement of cages in batteries was such that cages from each main group were evenly distributed across the battery (Figure 1) to minimise possible environmental effects.

4.2 Treatment

4.2.1 Selection of dose levels

Dose levels were selected in consultation with the Sponsor based on information from preliminary studies.

4.2.2 Dose levels, group size and identification

Each main group comprised 5 male and 5 female rats. Control and high dose groups included 5 additional animals per sex to be sacrificed after 2 weeks of recovery. One satellite group for toxicokinetics comprised 9 male and 9 female animals. The group identification and animal numbers assigned to the treatment are summarised below:

MAIN GROUPS

					Rat n	umbers	
Group	Treatment	Level	Maii	n phase	Recove	ry phase	
Number:	(mg/kg/day)+		M	F	M	F	
			(even)	(odd)	(even)	(odd)	
1	0.0	Control	2 - 10	1 - 9	12 - 20	11 - 19	
2	0.3	Low	22 - 30	21 - 29			
3	0.8	Medium	32 - 40	31 - 39			
4	2.0	High	42 - 50	41 - 49	52 - 60	51 - 59	
+: in term:	+: in terms of test item as supplied						

SATELLITE GROUP

Group	Treatment		Rat n	umbers		
Number:	(mg/kg)+	Level	Males	Females		
			(even)	(odd)		
5	2.0	High	62 - 78	61 - 77		
+: in terms of test item as supplied						

The rat numbers listed above formed the last digits of a computer generated 8 figure animal number (the remaining digits of the animal number were different for each concurrent study and served to ensure unique animal numbering for any study employing computerised data collection). The computerised system used in this study was the Xybion Path/Tox System, version 4.2.2.

4.2.3 Administration of test item

The test item was administered orally, by gavage, at a dose volume of 10 ml/kg body weight. Control animals received the vehicle alone at the same dose volume.

The dose was administered to each animal on the basis of the most recently recorded body weight and the volume administered was recorded for each animal.

4.2.4 Duration of treatment

All main group animals were dosed once a day, 7 days a week, for a minimum of 4 consecutive weeks followed by a recovery period of 2 weeks for 5 males and 5 females from groups 1 and 4. Satellite group animals were dosed once only.

All animals from the main groups were dosed up until the day before necropsy.

No treatment was given during the recovery period.

4.3 In vivo observations

4.3.1 Mortality

Throughout the study, all animals were checked each working day, early in the morning and in the afternoon. At weekends and Public Holidays a similar procedure was followed except that the final check was carried out at approximately mid-day. This allowed *post mortem* examinations to be carried out during the working period of that day.

A complete necropsy was performed as detailed in section 4.6.2 below.

4.3.2 Pre- and post-dose observations (Main groups)

All observations were recorded for individual animals. Examination of individual animals for signs of reaction to treatment was carried out daily before dosing, immediately after, and approximately 1 and 2 hours after dosing up to Day 10 of the study. Since no animals showed any post-dose effects, examinations were reduced to pre-dose, immediately after and approximately 1 hour after dosing until the end of treatment. These data, as no signs were observed, are not presented in a tabulated form in this report.

4.3.3 Clinical signs and neurotoxicity assessment (Main groups)

All clinical signs were recorded for individual animals. Once before commencement of treatment and once a week thereafter each animal was subjected to a detailed clinical examination, which included an evaluation of neurotoxicity. Animals were examined in an open arena for a period of three minutes. Observed parameters, described by an evaluation scale, are indicated below:

Removal (from cage): Easy, Difficult, Very difficult

Normal, Slow, Moderate, Marked

Handling reactivity: Lachrymation:

Absent, Slight, Marked

Palpebral closure:

Absent, Slight, Moderate, Marked

Salivation:

Absent, Slight, Marked

Piloerection:

Absent Present

Rearing:

Absent, Intervals of number of times (i.e. 1-3, 4-7, 8-10)

Spasms: Myoclonia: Absent, Tonic spasms, Clonic spasms, Tonic-clonic spasms Absent, Present

Mobility impairment:

Absent, Slight, Moderate, Marked

Arousal (animal activity):

Very slow, Slow, Normal, Moderate, Marked

Vocalisation:

Absent, Present

Stereotypies: Unusual respiratory pattern: Absent, Present Absent, Present

Bizarre behaviour:

Absent, Present

Urination: Defecation: Absent, Intervals of number of times (i.e. 1-3, 4-6) Absent, Intervals of number of times (i.e. 1-3, 4-6)

Tremors:

Absent, Present

Page 15

Gait (one of the following options):

Normal

Ataxia (Slight, Moderate, Marked) Hunched (Slight, Moderate, Severely)

Pronation

Fore limbs drag (Slight, Moderate, Marked) Hind limbs drag (Slight, Moderate, Marked)

All observed parameters, with the exception of the pre-dose, are reported in a group incidence table. Individual data are not included in this report.

Once during week 4 of treatment and once during week 2 of recovery, an evaluation of sensory reactivity to stimuli of different modalities (e.g. auditory, visual and proprioceptive stimuli) and assessment of grip strength were also performed.

4.3.4 Motor activity assessment (MA) (Main groups)

The motor activity of all animals was measured once during week 4 of treatment and week 2 of recovery by an automated activity recording device. Measurements were performed using a computer generated random order.

4.3.5 Body weight

All animals were weighed on the day of allocation to treatment groups, on the day that treatment commenced, weekly thereafter and just prior to necropsy. Satellite group animals were weighed on allocation and on the day of dosing only (data are not included in the report).

4.3.6 Food consumption (Main groups)

The weight of food consumed by each cage of rats was recorded weekly following allocation and the group mean daily intake per rat calculated.

4.4 Clinical pathology investigations (Main groups)

At the end of the 4 week treatment period and again at the end of week 2 of the recovery period, individual overnight urine samples were collected from all surviving animals of the main phase groups under conditions of food and water deprivation. Before starting urine collection, water bottles were removed from each cage and each animal received approximately 10 ml/kg of drinking water by gavage, in order to obtain urine samples suitable for analysis.

On the same days, samples of blood were withdrawn, prior to necropsy, under isofluorane anaesthesia from the abdominal vena cava from the same animals in the same conditions. Blood samples were collected and analysed in the same order, a computer-generated random cage order being used.

The blood samples collected were divided into tubes as follows:

EDTA anticoagulant

for haematological investigations

Heparin anticoagulant Citrate anticoagulant for biochemical tests for coagulation tests

The measurements performed on blood and urine samples are listed below:

4.4.1 Haematology

Haematocrit

Haemoglobin

Red blood cell count

Reticulocyte count (not performed as no signs of anaemia were evident)

Mean red blood cell volume

Mean corpuscular haemoglobin

Mean corpuscular haemoglobin concentration

White blood cell count

Differential leucocyte count - Neutrophils

- Lymphocytes
- Eosinophils
- Basophils
- Monocytes
- Large unstained cells

Abnormalities of the blood film

Platelets

Prothrombin time

4.4.2 Clinical chemistry

Alkaline phosphatase

Alanine aminotransferase

Aspartate aminotransferase

Gamma -glutamyltransferase

Urea

Creatinine

Glucose

Triglycerides

Phosphorus

Total bilirubin

Total cholesterol

Total protein

Albumin

Globulin

A/G Ratio

Sodium

Potassium

Calcium

Chloride

4.4.3 Urinalysis

Appearance

Volume

Specific gravity

PΉ

Protein

Total reducing substances

Glucose

Ketones

Bilirubin

Urobilinogen Blood

The sediment, obtained from centrifugation at approximately 3000 rpm for 10 minutes, was examined microscopically for:

Epithelial cells
Poly morphonuclear leucocytes
Erythrocytes
Crystals
Spermatozoa and precursors
Other abnormal components

4.5 Toxicokinetics (Satellite group)

Blood samples were collected at 9 time points from the day of dosing, from all animals of the satellite group as indicated in the following scheme:

Group	Treatment	Animal	Number	Time points
Number:	(mg/kg)	(Males)	(Females)	(hours)
		62, 64, 66	61, 63, 65	0, 4, 24
5	2.0	68, 70, 72	67, 69, 71	2, 8, 168
		74, 76, 78		6, 48, 216

At each sampling time approximately 0.8 ml blood samples were collected from the tail vein of each animal as indicated above. Samples were transferred into tubes containing heparin anticoagulant, centrifuged and the plasma frozen at -20°C. Analysis of the samples was carried out by the Analytical Chemistry Department of

Satellite group animals were dosed once only and no necropsy was performed on animals dying during the study or sacrificed at the end of the study. Surviving satellite group animals were killed at the end of the last bleeding procedure. No necropsy examination was performed on these animals.

Analysis of the samples was carried out by the Analytical Chemistry Department of Satellite group animals were dosed once only. Satellite group animals were killed at the end of the last bleeding procedure and no necropsy was performed in these animals.

For each fraction of the test product, the following parameters were calculated according to standard non-compartmental analysis:

 C_{max} : maximum observed plasma concentration

 T_{max} : time to C_{max} t¹/₂ : half life

AUC and AUC inf : area under the concentration-time curve calculated by the linear

trapezoidal rule

Means, standard deviations and kinetic parameters were obtained using a suitable Microsoft Excel Worksheet. Values identified in the tables as BLQ were considered as zero in the calculation of mean and standard deviation for plasma levels.

4.6 Terminal studies

4.6.1 Euthanasia

Animals that had completed the scheduled test period were killed by exsanguination under isofluorane anaesthesia. All animals of the main groups, including that found dead, were subjected to necropsy, supervised by a pathologist, as detailed below. Satellite group animals were killed with carbon dioxide.

4.6.2 Necropsy (Main groups)

The clinical history of the animal was studied and a detailed *post mortem* examination was conducted (including examination of the external surface and orifices). Changes were noted, the requisite organs weighed and the required tissue samples preserved in fixative and processed for histopathological examination (see sections 4.6.3 to 4.6.5).

4.6.3 Organ weights (Main groups)

From all animals completing the scheduled test period, the organs indicated in section 4.6.6 were dissected free of fat and weighed.

The ratios of organ weight to body weight were calculated for each animal.

4.6.4 Tissues fixed and preserved (Main groups)

Samples of all the tissues listed in section 4.6.6 were fixed and preserved in 10% buffered formol saline (except eyes which were fixed in Davidson's fluid; and testes and epididymides which were fixed in Bouin's solution and all preserved in 70% ethyl alcohol).

4.6.5 Histopathological examination

Tissues listed in section 4.6.6 were fixed and preserved. After dehydration and embedding in paraffin wax, sections of the tissues were cut at 5 micrometre thickness and stained with haematoxylin and eosin. In the first instance, the examination was carried out as detailed below:

- a) Tissues specified in section 4.6.6 from all animals in the control and high dose groups of the main phase.
- b) Tissues specified in Annex 1 from all animals killed or dying during treatment period.
- c) Tissue abnormalities from all main groups (this was a deviation from the protocol which indicated examination of abnormalities from all animals).

On the basis of the results obtained, in agreement with the Sponsor, the examination was extended to the liver, lungs and thymus of low and mid-dose group animals and to the animals which underwent 2 weeks of recovery.

4.6.6 Annex 1 of study protocol

Organs / Tissues	Weight	Fixation	Microscopic
V		Preservation	Examination
Abnormalities		✓	✓
Adrenal glands	✓	✓	✓
Bone marrow (from sternum)		✓	✓
Brain	✓	✓	✓
Caecum		✓	✓
Colon		✓	✓
Duodenum		✓	✓
Epididymides	✓	✓	✓
Eyes		✓	*
Heart	✓	✓	✓
Ileum (including Peyer's patches)		✓	✓
Jejunum		\checkmark	✓
Kidneys	✓	✓	✓
Liver	· 🗸	✓	✓
Lungs (including mainstem bronchi)		✓	✓
Lymph nodes - cervical		✓	✓
Lymph nodes - mesenteric		✓	✓
Ovaries	✓	✓	✓
Oviducts ^a		✓	✓
Parathyroid glands ^b		✓	✓
Pituitary gland		✓	✓
Prostate gland		✓	✓
Rectum		✓	✓
Sciatic nerve		✓	✓
Seminal vesicles		✓	✓
Spinal column		✓	*
Spinal cord		✓	✓
Spleen	✓	✓	✓
Stomach		✓	✓
Testes	✓	✓	✓
Thymus (where present)	✓	✓	✓
Thyroid	✓	✓	✓
Trachea		✓	✓
Urinary bladder		✓	✓
Uterus - cervix		✓	✓

^{*:} not examined as no signs of toxicity were observed

4.7 Statistical analysis

For continuous variables the significance of the differences amongst groups was assessed by analysis of variance. Differences between each treated group and the control group were assessed by Dunnett's test using a pooled error variance. The homogeneity of the data was verified by Bartlett's test before Dunnett's test. If data were found to be inhomogeneous a Modified t test (Cochran and Cox) was applied. The mean values, standard deviations and statistical analysis were calculated from the actual values in the computer without rounding off.

a: weighed and preserved with ovaries

b: weighed and preserved with thyroid gland

4.8 Deviations from protocol

Any deviations from protocol are indicated within the text of the report. No deviations occurred which were considered to have compromised the purpose or integrity of the study.

4.9 Archives

Full records were maintained of all aspects of study conduct, together with the results of all measurements and observations.

All specimens, raw data, records and documentation generated during the course of this study will be retained within the archive at the The data will be kept for a period of 3 years after which the Sponsor will be contacted for instructions regarding despatch or disposal of the material. Biological samples will be destroyed shortly after the issue of the Final Report.

5. RESULTS

5.1 Mortality (Appendix 1)

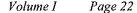
One female animal dosed at 0.3 mg/kg/day was found dead on Day 23 of treatment. No clinical signs were seen during the study in this animal. On the basis of the *post mortem* findings, (dark red contents seen in the abdominal cavity and 2 dark, ruptured areas in the liver observed at macroscopic examination along with the multifocal, mild haemorrhage in the liver, seen at microscopic examination). These findings indicate that this death was not treatment-related.

5.2 Pre- and post-dose observations and weekly clinical signs (Open field measurements) (Table 1)

No signs were observed at daily post-dose observations. These data were not tabulated. Detailed clinical signs with neurotoxicity assessment did generally not show any signs which could be correlated to the treatment with the test item.

5.3 Sensory reaction to stimuli and motor activity (Table 2; Appendices 2 and 3)

A dose-related reduction of grip strength was observed in the treated males at the end of treatment when compared to controls (reductions of 35%, 57% and 60%, groups 2, 3, 4 respectively). This parameter was also slightly reduced in the mid- and high dose females (27% and 26% respectively). No significant differences were observed at evaluations performed at the end of recovery.


Motor activity measurements performed at the end of treatment and recovery periods did not show changes which could be ascribed to treatment.

5.4 Body weight (Figure 2: Tables 3, 4 and 7; Appendices 4 and 5)

Body weights showed statistically significant reductions in the high dose animals from Day 22 (7% less than controls in the males) up to the end of the treatment period, when reductions of 21% (main group animals) and 16% (recovery animals) were noted in the males and 9% (main group animals) and 10% (recovery animals) in the females when compared to controls. The slight body weight losses observed in the treated animals may be ascribed to the overnight fast prior to bleeding procedures for clinical pathology analyses. This was not observed in the controls, which showed only a reduced body weight gain. Terminal body weight was also statistically significantly reduced in the high dose animals (20% in the males and 11% in the females). These decreased body weights, due to a reduction of body weight gain, were still evident at the end of the recovery period (25% in the males and 9% in the females). Decreases of body weight gain were correlated to the reduced food intake, observed in the high dose males.

5.5 Food consumption (Appendix 6)

A reduction (20% less than controls) of food intake was observed at the end of the treatment phase in the high dose males. Food intake was still significantly reduced (33%) at the end of the first week of recovery. Slight reductions (9%) were still present in the males at the end of the recovery period.

5.6 Haematology (Table 5; Appendix 7)

A decrease in white blood cell was observed in the high dose animals (approximately 19%) and in the mid-dose females (approximately 17%) at the end of the treatment period. This reduction was still evident at the end of the recovery period (11% and 16% in females and males respectively). The decrement comprised both the lymphocytes and the neutrophils in the males, which had 29%, 19% and 39% less neutrophils at the high, medium and low dose, respectively. Such an evident decrement was not observed in the females.

In addition, the prothrombin time was slightly increased in high dose males (14%). This could reflect the alteration in hepatic functions as indicated by the clinical chemistry results. This change showed a trend for recovery at the end of treatment-free period, when an increase of 8% was observed.

The other differences observed in the haematological parameters (RBC, HGB, HCT, MCHC) were considered to be incidental and of no toxicological significance, since they were observed only during the recovery phase and no other alterations in the same haematological parameters were observed during the treatment period.

5.7 Clinical chemistry (Table 6; Appendix 8)

The statistically significant changes in clinical chemistry parameters are summarized below:

Parameters	2M	3M	4M	4M Rec	2F	3F	4F	4F Rec
AP		+18%	+33%	+41%				
ALT		+309%	+219%					
AST		+58%	+61%					-29%
BILT			+70%			-60%	-33%	-37%
CHOL	-34%	-23%		+76%				
GLU							+20%	+31%
TRI		-51%		-45%				-27%
Urea			+48%	+35%			+24%	
Crea				-34%			-15%	-35%
Prot	-9%		-16%	-11%				
Alb			-13%					+9%
Glo	-14%	-11%	-23%	-26%				
A/G Ratio							+17%	+20%
Cl			+2%				+2%	-1%
Phos		-9%	-21%				-9%	-7%
Na		+4%		-2%				-2%
K								+12%

Changes observed at the clinical chemistry investigations performed during week 4 of treatment revealed an alteration of liver function in the high dose males and, to a lesser extent, in two mid-dose males (increases in hepatic markers alkaline phosphatase, alanine aminotransferase, aspartate aminotransferase and total bilirubin, decrements in protein, globulin and albumin). These changes were generally dose related (from approximately 20% to approximately 3 fold) and, in some high dose animals, values were outside the range of historical data.

The above mentioned changes could reflect an alteration in the hepatic function.

A reversibility of these changes was observed for the aminotransferase enzymes at the clinical pathology performed during week 2 of recovery.

No significant hepatic marker alterations were observed in females.

Urea plasma levels were increased in high dose animals, while creatinine and inorganic phosphorus showed a decrement in the same group. At the end of the recovery period, no complete reversibility of such changes was observed. The cause of these changes however remains unclear and could not be conclusively attributed to the test item.

In addition, changes of chloride and sodium serum levels were insufficient in magnitude to be of biological significance.

The other alterations observed during the recovery period in both sexes were considered to be incidental and of no toxicological significance.

5.8 Urinalysis (Table 7; Appendix 9)

No alterations in urine were observed which could be attributed to treatment.

5.9 Toxicokinetic analysis (Figure 3; Addendum IV)

Detectable plasma levels of the test item were measured between 2 and 216 hours after dosing in the animals dosed at 2.0 mg/kg. Maximum plasma levels (Cmax), calculated separately for each of the were as follows: 370.2 and 472.5 ng/ml of 124.3 and 160.7 ng/ml of 4545.4 and 4581.3 ng/ml of 4689.3 and 773.8 ng/ml of 196.9 and 234.7 ng/ml of in the males and females, respectively). C_{max} was generally measured 24 hours after dosing (t_{max}). A t_{max} of 6 hours was observed in the males a t_{max} of 2 hours was observed in the females for hours was observed in the females for The estimated half-life (t1/2) calculated separately for each showed the following figures: 544 and 2185 hours for 385 and 346 hours for 381, 481 and 39 hours for 454 and 763 hours for 763, 201 and 160 hours for 763 in males and females, respectively. Very high test item plasma levels of all fractions were still present seven days after dosing, particularly in the males. The AUC was calculated to be 65550 and 77653 ng/ml·h for , 22516 and 26563 ng/ml·h for , 791984 and 167950 ng/ml·h for 123729 and 130769 ng/ml·h for 30768 and

27116 ng/ml·h for in the males and females, respectively.

Calculations were generally made from t_{max,} with some exceptions (in the females), in which the 24 and 48 hour samples were included in the calculation.

AUC_(inf) was calculated to be 299662 and 877949 ng/ml·h for , 72388 and 63751 ng/ml·h for , 3249932 and 176042 ng/ml·h for , 464508 and 584697 ng/ml·h for , 57915 and 44431 ng/ml·h for in males and females, respectively.

Half-life values were obtained by an extrapolation, as no decrements of test item fraction plasma levels were observed at 216 hours post-dose. This situation did not allow the calculation of significant values of the AUC.

5.10 Organ weights (Tables 9 and 10; Appendices 10 and 11)

Dose-related, statistically significant increases in liver weights were noted in all treated males (54% and 84% in mid- and high dose groups for absolute weights, 17%, 57% and 130% greater than controls for relative weights) and in the mid- and high dose females (46% in high dose group for absolute weights, 16% and 65% in mid- and high dose groups for relative weights) at the end of the treatment period. These increases were still present at the end of the recovery period (in the males 89% and 152% and in the females 56% and 71% absolute and relative respectively).

Statistically significant reductions of the absolute (38% in the high dose males, 23% and 36% in the mid- and high dose females) and relative (23% in the high dose males, 20% and 28% in the mid- and high dose females) weights of the spleen were also observed at termination of the treatment period.

In addition the absolute and/or relative weights of the thymus were reduced in high dose males (absolute showing a reduction of 41% and relative of 27%) and the relative weights of the kidneys, epididymides and testes were slightly increased in the high dose males at the end of treatment. An increase of the relative weight of the thyroid (26% and 15% in males and females respectively), statistically significant only in the males, was observed in the high dose animals.

All these organs (spleen, kidneys, epididymides, testes, thyroid and thymus) still showed differences from controls at the end of recovery.

The significance of some of the observed organ weight variations (liver and thymus) was supported by macroscopic and microscopic findings.

5.11 Macroscopic observations (Table 11; Appendix 12)

Unscheduled death:

One group 2 female was found dead on day 23 of the study. The most relevant changes, observed at necropsy, were dark red contents in the abdominal cavity and 2 dark, ruptured areas in the liver.

Final sacrifice:

Pale colour of the liver, sometimes accompanied by swollen shape of the organ, was reported in 3/5 high dose and 1/5 mid-dose group males and in 1/5 high dose group females. Decreased size of the thymus was seen in 2/5 males from the high dose group. The seminal vesicles of 2/5 males from the same group appeared transparent.

Recovery sacrifice:

Enlargement of the liver and renal pelvis dilatation was recorded in 2/5 treated males.

5.12 Microscopic observations (Table 12; Appendix 12)

Unscheduled death:

The most important finding, observed in the found dead animal, was detected in the liver, where multifocal, mild haemorrhages were reported. This finding, along with the macroscopic observation in the abdominal cavity, suggests that this death could be considered spontaneous or accidental in origin.

Final sacrifice:

Changes, possibly related to the treatment, were noted in the liver, lungs and thymus of treated animals when compared to controls.

Liver: hepatocytic hypertrophy was observed in all high dose group animals, all mid-dose males and 4/5 low dose males. This finding showed mainly a panlobular distribution in the high dose group males, while it was limited to the centrilobular, mid-zonal areas in the remaining main phase animals.

Lungs: aggregation of alveolar macrophages was seen in the lungs of 4/5 males and 2/5 females from the high dose group. Such a finding could be possibly suggestive of a phospholipidosis.

No changes were observed in the spleen and kidneys.

Thymus: slight to moderate atrophy was observed in 3/5 males and in 1 female from the high dose group.

Recovery sacrifice:

Only a partial remission of the changes considered related to the administration of the test item was observed following the 2-week recovery period.

Liver: hepatocytic hypertrophy was still evident in all treated animals.

Lungs: instances of focal aggregation of alveolar macrophages were seen in the lungs of 1 treated male and 1 treated female.

Thymus: moderate atrophy was observed in 1 treated male.

Other findings:

Colloid depletion was observed in the seminal vesicles of 3/5 high dose group males. Hepatocytic necrosis was observed in 2/5 high dose and 1/5 intermediate dose males in the main phase and in 1 treated male from the recovery group. Due to the lack of a zonal distribution and being present in a few treated animals, this finding was considered spontaneous in origin. The above changes, as well as the moderate chronic inflammation reported in the liver of 1 high dose male killed at termination of the treatment phase, were considered to be unspecific, possibly linked to the general condition of the treated animals and spontaneous in origin.

The remaining findings reported in the animals sacrificed after completion of the scheduled test periods and in the unscheduled dead animal were considered to be incidental or spontaneous in origin.

6. CONCLUSION

The oral toxicity of when given by daily administration to rats at dosages of 0.3, 0.8 and 2.0 mg/kg/day has been investigated over a period of 4 weeks and possible recovery from any treatment-related changes over a 2 week recovery period.

Animals dosed at 2 mg/kg/day showed no significant reactions during the in-life phase of the study. A slight but dose-related reduction of the grip strength was observed at neurological tests performed at the end of treatment, mainly for males. Slight reductions in body weight and food intake were noted in the males from this group at the end of treatment and recovery periods. A reduction in the WBC count (neutrophils and/or lymphocytes) was observed at the end of treatment and recovery periods. In addition, the prothrombin time was slightly increased in the males. Clinical chemistry investigations showed a dose-related alteration of the liver function in the males at the end of treatment (increases in alkaline phosphatase, alanine aminotransferase, aspartate aminotransferase and total bilirubin, decrement of total protein, globulin and albumin). Alkaline phosphatase was still increased at the end of recovery period. Alanine aminotransferase and aspartate aminotransferase were completely recovered at the end of the treatment-free period. These increases were usually dose-related and, occasionally, outside the range of historical data. No significant hepatic marker alterations were observed in females. Other clinical chemistry parameters (urea, chloride, inorganic phosphorus and sodium) showed changes at the end of treatment, mainly in the males. At the end of the recovery period, no complete reversibility of such changes was observed. The cause of these changes however remains unclear and could not be conclusively attributed to the test item.

Absolute and relative liver weights were increased at this dose level in the males. Increments in the relative kidneys, testes and thyroid weights were observed at the end of the treatment period. Thymus and spleen relative and absolute weights were also statistically significantly reduced in the males at the end of treatment. These changes were not reversible at the end of recovery. Females of this dose group showed increments in absolute and relative liver weights and decrement of the spleen weight (both absolute and relative), without recovery.

The toxicological significance of the changes observed in the liver was definitely supported by the findings reported at *post mortem* examination. Pale colour of the liver, sometimes accompanied by swollen shape of the organ, was reported in the majority of the males and in individual females. Decreased size of the thymus was also seen in the high dose animals (mainly in the males).

Treatment-related changes were noted at microscopic examination in the liver, lungs and thymus. The liver was the most affected organ. Hepatocytic hypertrophy suggestive of an adaptive change was observed in animals from this dose group. The observed findings were of lower severity and incidence in the females.

Thymus atrophy was also observed in the high dose animals. This lesion showed a higher severity degree in the males, when compared to female animals and along with the colloid depletion in the animal vesicles noted in some high dose males it could be considered secondary to the poor general condition of the animals.

Aggregation of alveolar macrophages was seen in the lungs of males and females. Such a finding could be possibly suggestive of a phospholipidosis condition. No histopathological effects were observed in the spleen and kidneys.

In animals dosed at 0.8 mg/kg/day, the toxicological systemic effects were less relevant than for animals of the high dose group. A reduction of the grip strength was observed both in males and in females. No significant reductions in body weight and food consumption were observed for either sexes.

Slight effects in the haematological parameters, such as a decrease in the white blood cell count, were seen in female animals. Clinical chemistry variations, mainly comprising increment of alkaline phosphatase, alanine aminostranferase and aspartate aminotransferase were noted only in males. No significant hepatic marker alterations were observed in the females.

Absolute and relative liver weights were increased in the males, along with decrease in spleen and thymus weights. Females showed increment in liver and decrement in spleen weights both for the absolute and relative values.

The microscopic examination revealed liver hepatocytic hypertrophy in all the males but not in the females. No histopathological effects were observed in the spleen.

At 0.3 mg/kg/day, "in-life" observations showed a reduction in grip strength in the males. No effects in body weight and food consumption, haematological and clinical chemistry parameters were seen in these animals. Absolute and relative liver weight increment, along with decrement in spleen weight was still evident. Microscopic pathology revealed hepatocytic hypertrophy in the majority of male animals.

The only effect observed in the females was a slight decrease in spleen relative and absolute weights. No histopathological effects were observed in this organ.

On the basis of these results, signs of an evident toxic effect of the test item were seen at the 2 higher dose levels (0.8 and 2.0 mg/kg/day). Most of the observed effects were not reversible over a 2 week recovery period in the high dose animals. The findings in the liver, observed at all the doses were a clear indication of a toxic effect of the test item to this organ. Males were clearly more sensitive than females. Also the toxicokinetic half-life values were higher in males than females. Detectable plasma levels of the

were measured between 2 and 216 hours after dosing the animals at 2 mg/kg. C_{max} was usually measured after 24 hours post-dose (T_{max}), even though for some fractions different T_{max} were calculated, usually in the females. Due to the high plasma levels recorded at 216 hours post-dose, a correct calculation of the half-life (T ½) was not possible, only estimations were performed, comprised in the range of 201-544 hours for males and 39-763 hours for females. This situation did not allow the calculation of a significant value of the AUC.

Effects on the main target organ, the liver, although at a lower incidence when compared to those observed at the higher dose levels, were also observed in the males of the low dose level (0.3 mg/kg/day). Besides changes in the liver, only minor effects were observed at 0.3 mg/kg/day in the males. The majority of these effects were not considered adverse, as they slight, often not dose-related and within the normal range of historical control data. The hepatocytic hypertrophy could be suggestive of an adaptive change. However, the lack of recovery over a 2 week treatment-free period, seen in the high-dose animals, may be an indication of other changes occurring in the liver, not detectable through the standard microscopic examination. Therefore, none of the dose levels investigated may be considered either a No Observed Effect Level (NOEL) or a No Observed Adverse Effect Level (NOAEL) in this study for males. On the contrary, females appeared to be less sensitive than males. At 0.3 mg/kg/day no adverse effects were observed. Therefore this dose can be considered a No Observed Adverse Effect Level (NOAEL) for the females.

4-WEEK ORAL TOXICITY STUDY IN RATS FOLLOWED BY A 2 WEEK RECOVERY PERIOD

FIGURE 1 - Group and cage arrangement on battery

STUDY NO.:

MAIN PHASE

Group	Treatment	Level	Rat nu	ımbers	Cage n	umbers
Number:	(mg/kg/day)+		M	F	M	F
			(even)	(odd)		
1	0.0	Control	2 - 10	1 - 9	1	7
2	0.3	Low	22 - 30	21 - 29	3	9
3	0.8	Medium	32 - 40	31 - 39	4	10
4	2.0	High	42 - 50	41 - 49	5	11

RECOVERY PHASE

Group	Treatment	Level	Rat nu	mbers	Cage nu	ımbers
Number:	(mg/kg/day)+		M (even)	F (odd)	М	F
1	0.0	Control	12 - 20	11 - 19	2	8
4	2.0	High	52 - 60	51 - 59	6	12

^{+:} in terms of test item as supplied

MAIN PHASE

Group/Sex Cage no.

Males	Females
1M 4M ^R	1F 4F ^R
1 6	7 12
2M	2F
3	9
3M	3F
4	10
4M	4F
5	11
1M ^R	$1F^{R}$
2	8

o: No treatment will be given during the recovery period.

 $^{^{}R} = Recovery$

WEEK RECOVERY PERIOD

FIGURE 1 - Group and cage arrangement on battery (continued)

STUDY NO.

SATELLITE GROUP

Group	Treatment	Level	Rat numbers		Cage numbers	
Number:	(mg/kg/day)+		M (even)	F (odd)	M	F
5	2.0	High	62 - 78	61 - 77	13-15	16-18

Group/Sex Cage no.

	, ,		
м	Я	es	

Females

5M		
	13	
5M		
	14	
5M		
	15	

5F		
	16	
5F		
	17	
5F		
	18	

Group/Sex

Cage no.

Males	Females
1M ^R	
	2
4M ^R	
	6

4-WEEK ORAL TOXICITY STUDY IN RATS FOLLOWED BY A 2 WEEK RECOVERY PERIOD

FIGURE 2.1 - Body weight versus day of study - Males

STUDY NO.:

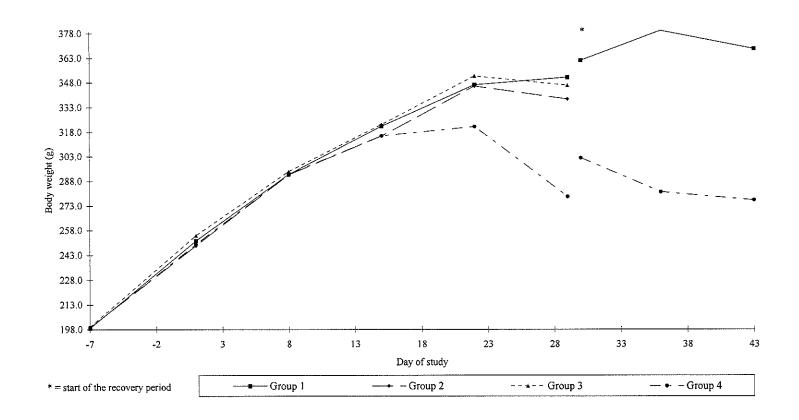


FIGURE 2.2 - Body weight versus day of study - Females

STUDY NO.:

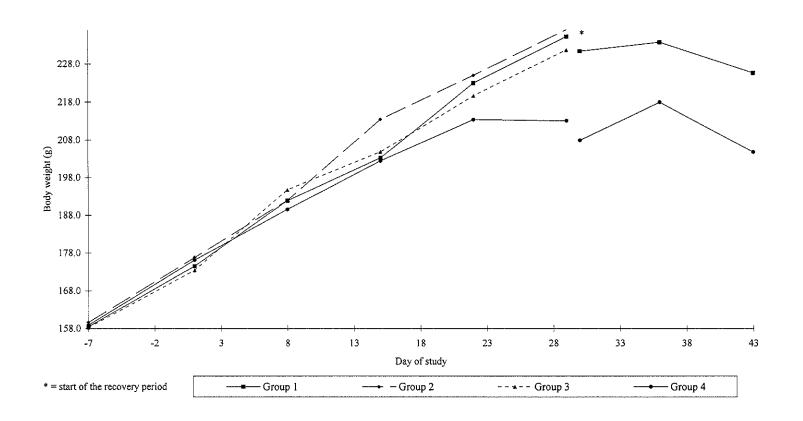
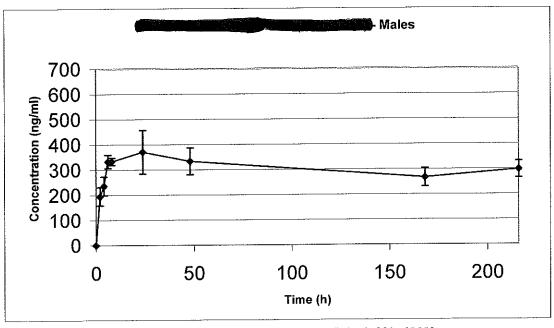
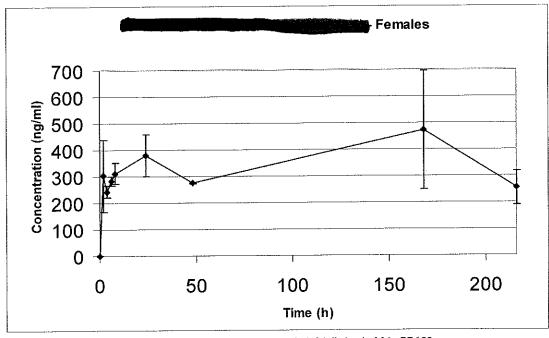
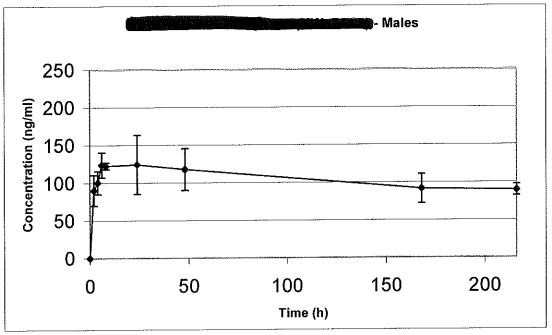



FIGURE 3 - Plasma levels

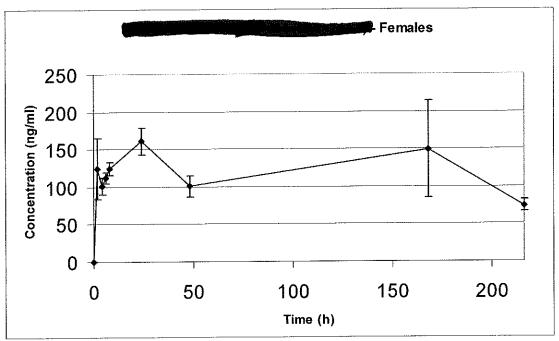

STUDY NO.:

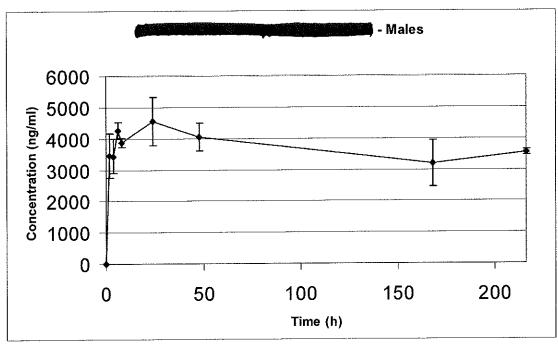
T_{max} (h): 24 C_{max} (ng/ml): 370.2

T 1/2 (h): 544


AUC (24-216) (ng/ml·h): 65550 AUC (inf) (ng/ml·h): 299662

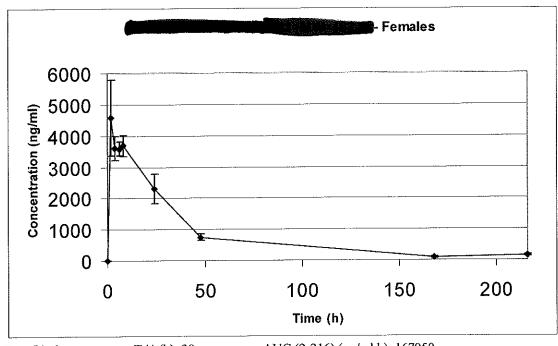
T_{max} (h): 168 C_{max} (ng/ml): 472.5 T 1/2 (h): 2185


AUC (24-216) (ng/ml·h): 77653 AUC (inf) (ng/ml·h): 877949


T_{max} (h): 24 C_{max} (ng/ml): 124.3 T ½ (h): 385

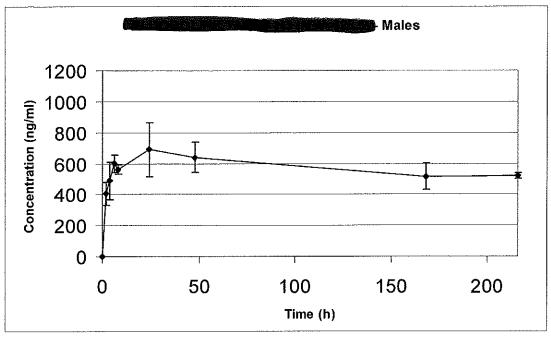
AUC (24-216) (ng/ml·h): 22516 AUC (inf) (ng/ml·h): 72388

T_{max} (h): 24 C_{max} (ng/ml): 160.7 T 1/2 (h): 346


AUC (24-216) (ng/ml·h): 26563 AUC (inf) (ng/ml·h): 63751

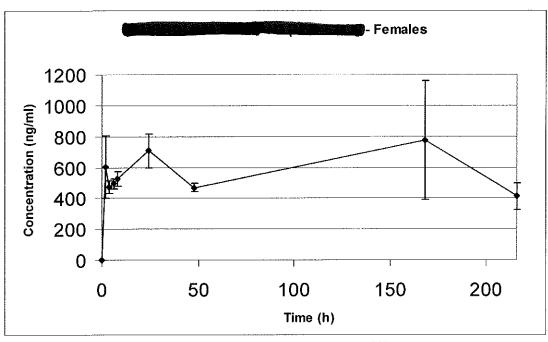
T_{max} (h): 24 C_{max} (ng/ml): 4545.4

T 1/2 (h): 481


AUC (24-216) (ng/ml·h): 791984 AUC (inf) (ng/ml·h): 3249932

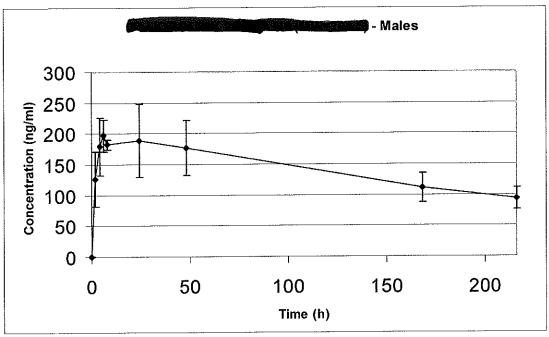
T_{max} (h): 2 C_{max} (ng/ml): 4581.3

T ½ (h): 39


AUC (2-216) (ng/ml·h): 167950 AUC (inf) (ng/ml·h): 176042

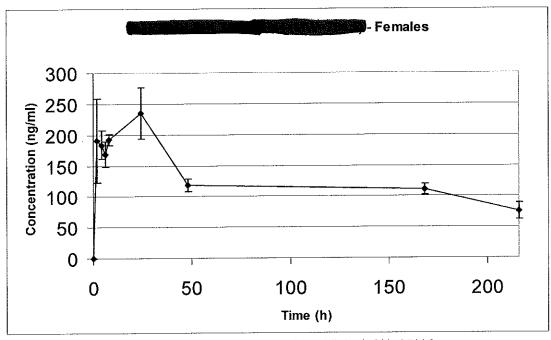
T_{max} (h): 24 C_{max} (ng/ml): 689.3

T ½ (h): 454


AUC (24-216) (ng/ml·h): 123729 AUC (inf) (ng/ml·h): 464508

T_{max} (h): 168 C_{max} (ng/ml): 773.8

T 1/2 (h): 763


AUC (24-216) (ng/ml·h): 130770 AUC (inf) (ng/ml·h): 584697

T_{max} (h): 6 C_{max} (ng/ml): 196.9

T 1/2 (h): 201

AUC (6-216) (ng/ml·h): 30768 AUC (inf) (ng/ml·h): 57915

T_{max} (h): 24 C_{max} (ng/ml): 234.7

T ½ (h): 160

AUC (24-216) (ng/ml·h): 27116 AUC (inf) (ng/ml·h): 44431

TABLE 1.1 - Clinical signs - During treatment - Group incidence

STUDY NO.:

MALES

Interval: 1 - 4 Weeks Group Observation		1 (0)	का त्रका त्रमा त्रका प्रथम स्थाप स्थाप स्थाप स्थाप स्थाप स्थाप स्थाप स्थाप स्थाप	2 (5)		3 (5)		4
ODDETASCION								
APPEARANCE	a	b	a	b	а	ь	a	р
Staining Hairloss	1 1	2.0 1.0	0	0.0	0 1	0.0 1.0	0	
REMOVAL								
Removal easy	10	4.0	5	4.0	5	4.0	10	4.0
HANDLING REACTIVITY								
Handling reactivity normal	10	4.0	5	4.0	5	4.0	10	4.0
LACHRYMATION								
Lachrymation absent	10	4.0	5	4.0	5	4.0	10	4.0
PALPEBRAL CLOSURE				*				
Palpebral closure absent	10	4.0	5 ·	4.0	5	4.0	10	4.0
SALIVATION								
Salivation absent	10	4.0	5	4.0	5	4.0	10	4.0
PILOERECTION								
Piloerection absent	10	4.0	5	4.0	5	4.0	10	4.0

Key: () = Number of animals alive at start of interval

a = Number of animals affected

b = Number of weeks with clinical sign/animal

TABLE 1.1 - Clinical signs - During treatment - Group incidence

STUDY NO.:

Interval: 1 - 4 Weeks Group Observation	(1	1		2 (5)	(3 (5)	(4 LO)	
REARING	a	þ	a	þ	a	b	a	b	
Rearing absent		1.0		0.0	0			0.0	
Rearing 1-3		1.0		1.0		0.0		0.0	
Rearing 4-7		1.1		1.0	0			1.5	
Rearing 8-10		1.3		1.0		1.0		1.2	
Rearing 11-14		1.0		1.3	3			1.6	
Rearing 15-20		1.4		1.7	5	2.2		2.2	
Rearing 21-30		1.2	0	3.0	1 1	2.0 1.0	5 1	1.2	
Rearing more than 30	2	1.0	U	0.0	1	1.0	1	1.0	
SPASMS									
Spasms absent	10	4.0	5	4.0	5	4.0	10	4.0	
MYOCLONIA									
Myoclonia absent	10	4.0	5	4.0	5	4.0	10	4.0	
GAIT									
Normal gait	10	4.0	5	4.0	5	4.0	10	4.0	
MOBILITY IMPAIRMENT									
Mobility impairment absent	10	4.0	5	4.0	5	4.0	10	4.0	
AROUSAL									
Arousal normal	10	4.0	5	4.0	5	4.0	10	4.0	
VOCALISATION									
Vocalisation absent	10	4.0	5	4.0	5	4.0	10	4.0	

Key: () = Number of animals alive at start of interval

a = Number of animals affected

b = Number of weeks with clinical sign/animal

TABLE 1.1 - Clinical signs - During treatment - Group incidence

STUDY NO.:

MALES

Interval: 1 - 4 Weeks Group Observation	Ι.	1	,	2 (5)		3 (5)	ı.	4 .0)	
STEREOTYPIES	a	þ	a	b	a	þ	a	b	
STEREOTTPIES									
Stereotypies absent	10	4.0	5	4.0	5	4.0	10	4.0	
UNUSUAL RESPIRATION									
Unusual respiration absent	10	4.0	5	4.0	5	4.0	10	4.0	
BIZARRE BEHAVIOUR									
Bizarre behaviour absent	10	4.0	5	4.0	5	4.0	10	4.0	
URINATION									
Urination absent	8	1.6	3	2.7	2	1.5	7	1.9	
Urination 1-3		1.4		2.0	4			2.1	
Urination 4-6		1.3		1.0	1			1.0	
Urination 7-9	1	1.0		1.0	3	1.0		1.7	
Urination more than 10	2	1.5	1	2.0	2	2.0	4	1.0	
DEFECATION									
Defecation absent		3.9		3.6	5	4.0	10	4.0	
Defecation 1-3	1	1.0		0.0	0	0.0	0		
Defecation 4-6	0	0.0	1	2.0	0	0.0	0	0.0	
TREMORS									
Tremors absent	10	4.0	5	4.0	5	4.0	10	4.0	

Key: () = Number of animals alive at start of interval

a = Number of animals affected

b = Number of weeks with clinical sign/animal

TABLE 1.1 - Clinical signs - During treatment - Group incidence

STUDY NO.:

FEMALES

Interval: 1 - 4 Weeks Group Observation		1 10)		2 (5)	(5	 3)	4 (10)	
REMOVAL		b	a	b	a	b	a :	b
Removal easy	10	4.0	5	3.8	5	4.0	10 4	. 0
HANDLING REACTIVITY								
Handling reactivity normal	10	4.0	5	3.8	5	4.0	10 4	.0
LACHRYMATION								
Lachrymation absent	10	4.0	5	3.8	5	4.0	10 4	.0
PALPEBRAL CLOSURE								
Palpebral closure absent	10	4.0	5	3.8	5	4.0	10 4	.0
SALIVATION								
Salivation absent	10	4.0	5	3.8	5	4.0	10 4	.0
PILOERECTION								
Piloerection absent	10	4.0	5	3.8	5	4.0	10 4	.0
REARING								
Rearing 1-3 Rearing 4-7 Rearing 8-10 Rearing 11-14 Rearing 15-20 Rearing 21-30 Rearing more than 30	1	0.0 1.0 1.0 2.0 2.0 2.7 2.6	0 0 0 0 1 4 3	0.0 0.0 0.0 0.0 1.0 2.5 2.7	0 0 1 1 4	0.0 0.0 0.0 1.0 2.0 2.8	0 0 1 3 9 3	

Key: () = Number of animals alive at start of interval

a = Number of animals affected

b = Number of weeks with clinical sign/animal

TABLE 1.1 - Clinical signs - During treatment - Group incidence

STUDY NO.:

FEMALES

Interval: 1 - 4 Weeks Group Observation	(:	1 10)	2 (5)	3 (5)	4 (10)	
SPASMS		b	a b	a b	a b	
Spasms absent	10	4.0	5 3.8	5 4.0	10 4.0	
MYOCLONIA						
Myoclonia absent	10	4.0	5 3.8	5 4.0	10 4.0	
GAIT						
Normal gait	10	4.0	5 3.8	5 4.0	10 4.0	
MOBILITY IMPAIRMENT						
Mobility impairment absent	10	4.0	5 3.8	5 4.0	10 4.0	
AROUSAL						
Arousal normal	10	4.0	5 3.8	5 4.0	10 4.0	
VOCALISATION						
Vocalisation absent	10	4.0	5 3.8	5 4.0	10 4.0	
STEREOTYPIES						
Stereotypies absent	10	4.0	5 3.8	5 4.0	1.0 4.0	
UNUSUAL RESPIRATION						
Unusual respiration absent	10	4.0	5 3.8	5 4.0	10 4.0	
BIZARRE BEHAVIOUR						
Bizarre behaviour absent	10	4.0	5 3.8	5 4.0	10 4.0	

Key: () = Number of animals alive at start of interval

a = Number of animals affected

b = Number of weeks with clinical sign/animal

TABLE 1.1 - Clinical signs - During treatment - Group incidence

STUDY NO.:

FEMALES

Interval: 1 - 4 Weeks Group Observation	(:	1 10)		2 (5)		3 (5)	(:	4 10)	
URINATION	a	b	a	b	a	b	a	b	
Urination absent Urination 1-3 Urination 4-6	10 4 1	3.2 1.5 2.0	5 3 0	2.8 1.7 0.0	5 2 0	3.6 1.0 0.0	10 5 0	3.5 1.0 0.0	
DEFECATION									
Defecation absent	10	4.0	5	3.8	5	4.0	10	4.0	
TREMORS									
Tremors absent	10	4.0	5	3.8	5	4.0	10	4.0	

Key: () = Number of animals alive at start of interval

a = Number of animals affected

b = Number of weeks with clinical sign/animal

TABLE 1.2 - Clinical signs - During recovery - Group incidence

STUDY NO.:

Interval: 1 - 2 Weeks				
Group Observation		1 5)	(4 5)
		b	a	b
APPEARANCE				
Scab(s) Hairloss		0.0	1	1.0
	U	0.0	3	1.0
REMOVAL				
Removal easy	5	2.0	5	2.0
HANDLING REACTIVITY				
Handling reactivity normal	5	2.0	5	2.0
LACHRYMATION				
Lachrymation absent	5	2.0	5	2.0
PALPEBRAL CLOSURE				
Palpebral closure absent	5	2.0	5	2.0
SALIVATION				
Salivation absent	5	2.0	5	2.0
PILOERECTION				
Piloerection absent	5	2.0	5	2.0
	•			

Key: () = Number of animals alive at start of interval

a = Number of animals affected

b = Number of weeks with clinical sign/animal

TABLE 1.2 - Clinical signs - During recovery - Group incidence

STUDY NO.:

Interval: 1 - 2 Weeks	

Interval: 1 - 2 Weeks		_				
Group Observation	,	1 5)		(5)		
Observation				(5)		
	a	b	a		b	
REARING						
Rearing 1-3		1.0		1		
Rearing 4-7		1.0		1		
Rearing 8-10		2.0		1		
Rearing 11-14		1.5	3	1	1.0 1.0	
Rearing 15-20 Rearing 21-30	0 1	0.0	0		1.0 J.0	
Realing 21-30	1	2.0	U).0	
SPASMS						
Spasms absent	5	2.0	5	2	2.0	
MYOCLONIA						
Myoclonia absent	5	2.0	5	2	2.0	
GAIT						
Normal gait	5	2.0	5	2	2.0	
MOBILITY IMPAIRMENT						
Mobility impairment absent	5	2.0	5	2	2.0	
AROUSAL						
Arousal normal	5	2.0	5	2	2.0	
VOCALISATION						
Vocalisation absent	5	2.0	5	2	2.0	

Key: () = Number of animals alive at start of interval

a = Number of animals affected

b = Number of weeks with clinical sign/animal

TABLE 1.2 - Clinical signs - During recovery - Group incidence

STUDY NO.:

Interval: 1 - 2 Weeks			
Group	1	4	
Observation	(5)	(5)	
	a b	a b	
STEREOTYPIES			
Stereotypies absent	5 2.0	5 2.0	
UNUSUAL RESPIRATION			
Unusual respiration absent	5 2.0	5 2.0	
BIZARRE BEHAVIOUR			
Bizarre behaviour absent	5 2.0	5 2.0	
URINATION			
Urination absent	1 1.0	1 2.0	
Urination 1-3	2 1.0	4 2.0	
Urination 4-6	4 1.0	0 0.0	
Urination 7-9 Urination more than 10	1 1.0 2 1.0	0 0.0	
Offination more than 10	2 1.0	0 0.0	
DEFECATION			
Defecation absent	5 2.0	5 2.0	
TREMORS			
Tremors absent	5 2.0	5 2.0	

Key: () = Number of animals alive at start of interval

a = Number of animals affected

b = Number of weeks with clinical sign/animal

TABLE 1.2 - Clinical signs - During recovery - Group incidence

STUDY NO.:

FEMALES

Interval: 1 - 2 Weeks Group Observation	1 (5)	4 (5)	
Observation		(5)	
REMOVAL	a b	a b	
Removal easy	5 2.0	5 2.0	
HANDLING REACTIVITY			
Handling reactivity normal	5 2.0	5 2.0	
LACHRYMATION			
Lachrymation absent	5 2.0	5 2.0	
PALPEBRAL CLOSURE			
Palpebral closure absent	5 2.0	5 2.0	
SALIVATION			
Salivation absent	5 2.0	5 2.0	
PILOERECTION			
Piloerection absent	5 2.0	5 2.0	
REARING			
Rearing 11-14 Rearing 15-20	0 0.0 0 0.0	1 1.0 3 1.0	
Rearing 21-30 Rearing more than 30	4 1.3 4 1.3	4 1.5 0 0.0	
SPASMS			•
Spasms absent	5 2.0	5 2.0	

Key: () = Number of animals alive at start of interval

a = Number of animals affected

b = Number of weeks with clinical sign/animal

TABLE 1.2 - Clinical signs - During recovery - Group incidence

STUDY NO.:

FEMALES

Interval: 1 - 2 Weeks Group Observation	1 (5)	4 (5)	
MYOCIONIA	a b	a b	
Myoclonia absent	5 2.0	5 2.0	
GAIT			
Normal gait	5 2.0	5 2.0	
MOBILITY IMPAIRMENT			
Mobility impairment absent	5 2.0	5 2.0	
AROUSAL			
Arousal normal	5 2.0	5 2.0	
VOCALISATION			
Vocalisation absent	5 2.0	5 2.0	
STEREOTYPIES			
Stereotypies absent	5 2.0	5 2.0	
UNUSUAL RESPIRATION			
Unusual respiration absent	5 2.0	5 2.0	
BIZARRE BEHAVIOUR			
Bizarre behaviour absent	5 2.0	5 2.0	
URINATION			
Urination absent Urination 1-3	5 1.4 3 1.0	5 1.6 2 1.0	

Key: () = Number of animals alive at start of interval

a = Number of animals affected

b = Number of weeks with clinical sign/animal

TABLE 1.2 - Clinical signs - During recovery - Group incidence

STUDY NO.:

FEMALES

1 (S)	4 (5)	
a b	a b	
5 2.0	5 2.0	
5 2.0	5 2.0	
	a b	(5) (5) a b a b 5 2.0 5 2.0

Key: () = Number of animals alive at start of interval

a = Number of animals affected

b = Number of weeks with clinical sign/animal

TABLE 2.1 - Motor activity - At the end of treatment - Group mean data

STUDY NO.:

MALES

	Cont	rol		Gro	up 2		Gro	up 3		Gro	up 4	
Parameter/units	Mean	SD	n	Mean	SD	n	Mean	SD	n	Mean	SD	n
							·					
Counter display	904.6	208.0	10	925.6	198.7	5	1142.2	271.9	5	846.1	322.2	1.0

Controls from group(s): 1 Subgroup(s): 1

* = mean value of group is significantly different from control at p < 0.05

** = mean value of group is significantly different from control at p < 0.01

Statistical analysis: Dunnett's test if group variances are homogeneous

Modified t test if group variances are inhomogeneous (\$)

TABLE 2.1 - Motor activity - At the end of treatment - Group mean data

STUDY NO.:

FEMALES

	Cont	rol		Gro	ip 2		Group	3		Group	4	
Parameter/units	Mean	SD	n	Mean	SD	n	Mean	SD	n	Mean	SD	n
Counter display	1027.1	145.6	10	922.8	126.9	4	956.6	67.5	5	936.0	171.9	10

Controls from group(s): 1 Subgroup(s): 1 * = mean value of group is significantly different from control at p < 0.05 ** = mean value of group is significantly different from control at p < 0.01 Statistical analysis: Dunnett`s test if group variances are homogeneous Modified t test if group variances are inhomogeneous (\$)

Page 51

TABLE 2.2 - Motor activity - At the end of recovery - Group mean data

STUDY NO.:

MALES

	Сот	Group 4				
Parameter/units	Mean	SD	n	Mean	SD	n
Counter display	930.4	280.1	5	864.2	241.7	5

Controls from group(s): 1 Subgroup(s): 1 * = mean value of group is significantly different from control at p < 0.05 ** = mean value of group is significantly different from control at p < 0.01 Statistical analysis: Dunnett's test if group variances are homogeneous Modified t test if group variances are inhomogeneous (\$)

TABLE 2.2 - Motor activity - At the end of recovery - Group mean data

STUDY NO.:

FEMALES

							-
	Con	ontrol Gro			oup 4		
Parameter/units	Mean	SD	n	Mean	SD	n	
							-
Counter display	979.8	159.9	5	929.0	96.8	5	

Controls from group(s): 1 Subgroup(s): 1 * = mean value of group is significantly different from control at p < 0.05 ** = mean value of group is significantly different from control at p < 0.01 Statistical analysis: Dunnett's test if group variances are homogeneous Modified t test if group variances are inhomogeneous (\$)

TABLE 3.1 - Body weight (g) - During treatment - Group mean data

STUDY NO.:

	Day of Phase								
Group(s)		1!	1"	8	15	22	29		
1	(n)	10	10	10	10	10	5		
	Mean	198.83	251.67	292.10	321.58	346.56	351.08		
	SD	5.93	5.66	8.36	11.81	11.76	9.58		
2	(n)	5	5	5	5	5	5		
	Mean	199.35	248.83	291.84	315.54	345.82	337.91		
	SD	7.28	7.73	10.09	14.11	16.90	14.31		
3	(n)	5	5	5	5	5	5		
	Mean	199.71	254.91	293.88	322.67	351.92	346.24		
	SD	5.33	6.07	3.67	9.03	7.66	11.27		
4	(n)	10	10	10	10	10	5		
	Mean	199.33	249.58	292.24	315.66	321.36**	278.69**		
	SD	7.04	7.46	8.61	12.27	16.25	24.70		

Note: ! = Pretest phase; " = Dosing phase;

^{* =} mean value of group is significantly different from control at p < 0.05

^{** =} mean value of group is significantly different from control at p < 0.01

Statistical analysis: Dunnett's test if group variances are homogeneous

Modified t test if group variances are inhomogeneous (\$)

TABLE 3.1 - Body weight (g) - During treatment - Group mean data

STUDY NO.:

FEMALES

				Day	of Ph	a s e		
Group(s)		1!	1"	8	15	22	29	
1	(n)	10	10	10	10	10	 5	
	Mean	158.51	174.55	191.88	203.24	222.92	235.19	
	SD	5.88	11.36	12.24	9.53	12.14	10.93	
2	(n)	5	5	5	5	5	4	
	Mean	159.66	176.80	191.97	213.44	224.97	237.02	
	SD	6.66	8.07	10.83	10.67	10.19	6.18	
3	(n)	5	5	5	5	5	5	
	Mean	158.28	173.42	194.78	204.80	219.57	231.64	
	SD	6.18	7.53	13.99	13.53	10.97	13.29	
4	(n)	10	10	10	10	10	5	
	Mean	158.92	176.11	189.75	202.43	213.40	213.07**	
	SD	6.30	7.27	10.54	6.89	10.26	7.70	

Note: ! = Pretest phase; " = Dosing phase; * = mean value of group is significantly different from control at p < 0.05

^{** =} mean value of group is significantly different from control at p < 0.01

Statistical analysis: Dunnett's test if group variances are homogeneous

Modified t test if group variances are inhomogeneous (\$)

TABLE 3.2 - Body weight (g) - During recovery - Group mean data

STUDY NO.:

MALES

e 15
5
368.60
19.32
5
276.64**
32.49

Statistical analysis: Dunnett's test if group variances are homogeneous

Modified t test if group variances are inhomogeneous (\$)

Note: Data for Recovery phase

^{* =} mean value of group is significantly different from control at p < 0.05

^{** =} mean value of group is significantly different from control at p < 0.01

TABLE 3.2 - Body weight (g) - During recovery - Group mean data

STUDY NO.:

FEMALES

			Day of Phase	
Group(s)	1		8	15
1	(n)	5	5	5
	Mean	231.34	233.68	225.59
	SD	9.42	11.63	8.92
4	(n)	5	5	5
	Mean	207.92**	217.92*	204.76**
	SD	7.53	9.52	8.87

Note: Data for Recovery phase

^{* =} mean value of group is significantly different from control at p < 0.05

^{** =} mean value of group is significantly different from control at p < 0.01

Statistical analysis: Dunnett's test if group variances are homogeneous

Modified t test if group variances are inhomogeneous (\$)

TABLE 4.1 - Body weight change (g) - During treatment - Group mean data

STUDY NO.:

MALES

			Da	y of Phase	·	
Group(s)		8!	15	22	29	
1	(n) Mean SD	10 40.42 6.66	10 69.91 9.66	10 94.89 11.31	5 95.83 11.20	
2	(n) Mean SD	5 43.01 3.97	5 66.71 8.55	5 96.99 9.59	5 89.07 8.14	
3	(n) Mean SD	5 38.98 2.78	5 67.76 8.79	5 97.01 11.62	5 91.34 13.00	
4	(n) Mean SD	10 42.66 5.78	10 66.08 10.74	10 71.78** 16.62	5 27.26** 26.92	

Note: ! = Dosing phase; " = Recovery phase

^{* =} mean value of group is significantly different from control at p < 0.05

^{** =} mean value of group is significantly different from control at p < 0.01
Statistical analysis: Dunnett's test if group variances are homogeneous

Modified t test if group variances are inhomogeneous (\$)

[&]quot; = mean body weight change relevant to Day 1 of study

TABLE 4.1 - Body weight change° (g) - During treatment - Group mean data

STUDY NO.:

FEMALES

			Da	Day of Phase					
Group(s)		8!	15	22	29				
1	(n)	10	10	10	5				
	Mean	17.33	28.69	48.37	52.12				
	SD	4.39	7.18	9.01	8.76				
2	(n)	5	5	5	4				
	Mean	15.17	36.64	48.17	57.59				
	SD	4.48	6.86	10.46	4.66				
3	(n)	5	5	5	5				
	Mean	21.36	31.38	46.15	58.22				
	SD	10.75	10.05	9.02	12.87				
4	(n)	10	10	10	5				
	Mean	13.63	26.32	37.29*	38.67				
	SD	9.45	6.11	10.84	7.99				

Note: ! = Dosing phase; " = Recovery phase \star = mean value of group is significantly different from control at p < 0.05

^{** =} mean value of group is significantly different from control at p < 0.01

Statistical analysis: Dunnett's test if group variances are homogeneous

Modified t test if group variances are inhomogeneous (\$)

[&]quot; = mean body weight change relevant to Day I of study

TABLE 4.2 - Body weight change° (g) - During recovery - Group mean data

STUDY NO.:

MALES

Group(s)		1	Day of Phase 8	15	
1	(n) Mean SD	5 113.46 13.52	5 131.53 15.94	5 120.5 18.09	·
4	(n) Mean SD	5 54.42** 16.72	5 33.78** 43.25	5 28.90** 40.11	

Note: Data for Recovery phase

^{* =} mean value of group is significantly different from control at p < 0.05

** = mean value of group is significantly different from control at p < 0.01

Statistical analysis: Dunnett's test if group variances are homogeneous

Modified t test if group variances are inhomogeneous (\$)

^{° =} mean body weight change relevant to Day 1 of study

TABLE 4.2 - Body weight change° (g) - During recovery - Group mean data

STUDY NO.:

FEMALES

			Day of Phas	e	
Group(s)		1	8	15	
1	(n)	 5	5	5	
	Mean	65.31	67.65	59.56	
	SD	8.86	7.62	7.13	
4	(n)	5	5	5	
	Mean	30.11	40.11**	26.95	
	SD	12.67	9.81	10.69	

Note: Data for Recovery phase

^{* =} mean value of group is significantly different from control at p < 0.05

^{** =} mean value of group is significantly different from control at p < 0.01

Statistical analysis: Dunnett's test if group variances are homogeneous

Modified t test if group variances are inhomogeneous (\$)

[&]quot; = mean body weight change relevant to Day 1 of study

TABLE 5.1 - Haematology - At the end of treatment - Group mean data

STUDY NO.:

MALES

Parameter/units	Co: Mean	ntrol SD	n	Gro Mean	oup 2 SD	n	Gre Mean	oup 3	n	Gr Mean	oup 4	n
RED BLOOD CELL COUNT 10^12/1	7.914	0.243	5	7.808	0.327	5	7.516	0.213	5	8.192	0.421	5
HAEMOGLOBIN g/dl	15.08	0.33	5	14.96	0.57	5	14.72	0.62	5	15.62	0.61	5
HAEMATOCRIT %	43.10	0.96	5	41.80	1.99	5	41.54	1.94	5	44.24	1.62	5
MEAN RED BLOOD CELL VOLUME	54.46	1.69	5	53.54	1.36	5	55.26	1.22	5	54.06	1.21	5
MEAN CORPUSCULAR Hb	19.08	0.60	5	19.20	0.45	5	19.60	0.41	5	19.10	0.31	5
MEAN CORPUSCULAR Hb CONC.	35.02	0.34	5	35.84*	0.49	5	35.48	0.23	5	35.32	0.45	5

Controls from group(s): 1 Subgroup(s): 1

Modified t test if group variances are inhomogeneous (\$)

^{* =} mean value of group is significantly different from control at p < 0.05** = mean value of group is significantly different from control at p < 0.01

Statistical analysis: Dunnett's test if group variances are homogeneous

TABLE 5.1 - Haematology - At the end of treatment - Group mean data

STUDY NO.:

MALES

	Contr	ol		Group	2		Group	3		Group	o 4	
Parameter/units	Mean	SD	n	Mean	SD	n	Mean	SD	n	Mean	SD	n
PLATELETS 10^9/1	888.4	76.0	5	828.0	90.1	5	757.0*	61.5	5	876.2	63.3	5
PROTHROMBIN TIME	15.82	0.72	5	16.92*	0.66	5	16.12	0.43	5	17.98**	0.49	5

Controls from group(s): 1 Subgroup(s): 1

* = mean value of group is significantly different from control at p < 0.05

** = mean value of group is significantly different from control at p < 0.01

Statistical analysis: Dunnett's test if group variances are homogeneous

Modified t test if group variances are inhomogeneous (\$)

TABLE 5.1 - Haematology - At the end of treatment - Group mean data

STUDY NO.:

MALES

Parameter/units		Co: Mean	ntrol SD	n	Gro Mean	oup 2 SD	n	Gro Mean	oup 3 SD	n	Gro Mean	up 4 SD	n
WHITE BLOOD CELL COUNT 10^9/1		8.414	0.724	5	8.778	1.296	5	8.164	2.609	5	6.824	0.671	5
NEUTROPHILS %		20.28	4.28	5	12.46*	3.91	5	16.42	4.59	5	14.50	5.64	5
LYMPHOCYTES %		75.00	3.70	5	81.48	3.33	5	77.92	4.68	5	78.30	6.92	5
MONOCYTES &		2.92	0.26	5	3.60	0.90	5	3.26	0.64	5	4.32	1.30	5
EOSINOPHILS %	(\$)	0.90	0.34	5	1.26	0.23	5	1.24	0.38	5	1.24	1.02	5
BASOPHILS %		0.20	0.07	5	0.20	0.07	5	0.34	0.13	5	0.62**	0.19	5
LARGE UNSTAINED CELLS	(\$)	0.74	0.05	5	0.96	0.28	5	0.80	0.25	5	1.06	0.39	5

Modified t test if group variances are inhomogeneous (\$)

Controls from group(s): 1 Subgroup(s): 1 \star = mean value of group is significantly different from control at p < 0.05

^{** =} mean value of group is significantly different from control at p < 0.01

Statistical analysis: Dunnett's test if group variances are homogeneous

TABLE 5.1 - Haematology - At the end of treatment - Group mean data

STUDY NO.:

FEMALES

	Coı	ntrol		Gr	oup 2		Gr	oup 3		Gr	oup 4	
Parameter/units	Mean	SD	n									
RED BLOOD CELL COUNT 10^12/1	6.996	0.303	5	7.090	0.104	4	7.128	0.153	5	7.066	0.288	5
HAEMOGLOBIN g/dl	13.64	0.56	5	14.03	0.17	4	14.00	0.31	5	13.76	0.46	5
HAEMATOCRIT %	37.50	1.76	5	38.58	0.43	4	38.44	0.88	5	38.06	1.35	5
MEAN RED BLOOD CELL VOLUME fl	53.62	0.94	5	54.38	0.83	4	53.98	1.05	5	53.90	1.49	5
MEAN CORPUSCULAR Hb	19.48	0.38	5	19.78	0.26	4	19.62	0.30	5	19.46	0.48	5
MEAN CORPUSCULAR Hb CONC.	36.36	0.42	5	36.35	0.30	4	36.34	0.51	5	36.14	0.51	5

Controls from group(s): 1 Subgroup(s): 1 \star = mean value of group is significantly different from control at p < 0.05 $\star\star$ = mean value of group is significantly different from control at p < 0.01 Statistical analysis: Dunnett's test if group variances are homogeneous Modified t test if group variances are inhomogeneous (\$)

TABLE 5.1 - Haematology - At the end of treatment - Group mean data

STUDY NO.:

FEMALES

		Coi	ntrol		Gro	sup 2		Gro	up 3		Gro	up 4	
Parameter/units		Mean	SD	n	Mean	SD	n	Mean	SD	n	Mean	SD	n
PLATELETS 10^9/1	(\$)	743.0	414.9	4	994.0	65.5	4	905.2	58.6	5	822.2	44.9	5
PROTHROMBIN TIME		16.90	0.26	3	16.95	0.59	4	16.78	0.36	5	16.80	1.06	5

Controls from group(s): 1 Subgroup(s): 1

* = mean value of group is significantly different from control at p < 0.05 ** = mean value of group is significantly different from control at p < 0.01

Statistical analysis: Dunnett's test if group variances are homogeneous

Modified t test if group variances are inhomogeneous (\$)

TABLE 5.1 - Haematology - At the end of treatment - Group mean data

STUDY NO.:

FEMALES

		Co	ntrol		Gre	oup 2		Gro	oup 3		Gre	oup 4	
Parameter/units		Mean	SD	n	Mean	SD	n	Mean 	SD	n	Mean	SD	n
WHITE BLOOD CELL COUNT 10^9/1	(\$)	7.124	1.052	5	7.175	0.411	4	5.924	0.848	5	5.806	2.475	5
NEUTROPHILS %		9.48	4.09	5	12.48	3.60	4	11.50	3.84	5	8.88	1.61	5
LYMPHOCYTES %		85.06	3.73	5	81.00	4.66	4	81.96	3.25	5	85.50	1.41	5
MONOCYTES %		3.20	1.15	5	3.88	0.94	4	3.18	0.76	5	3.20	0.63	5
EOSINOPHILS		1.44	0.22	5	1.63	0.40	4	2.34*	0.74	5	1.40	0.44	5
BASOPHILS %		0.14	0.05	5	0.15	0.06	4	0.16	0.05	5	0.16	0.05	5
LARGE UNSTAINED CELLS		0.72	0.13	5	0.88	0.10	4	0.86	0.26	5	0.90	0.19	5

Controls from group(s): 1 Subgroup(s): 1

Modified t test if group variances are inhomogeneous (\$)

 $[\]star$ = mean value of group is significantly different from control at p < 0.05

^{** =} mean value of group is significantly different from control at p < 0.01

Statistical analysis: Dunnett's test if group variances are homogeneous

TABLE 5.2 - Haematology - At the end of recovery - Group mean data

STUDY NO.:

MALES

					_~~~~~	
	Con	itrol		Gro	1p 4	
Parameter/units	Mean	SD	n	Mean	SD	n
RED BLOOD CELL COUNT 10^12/1	8.236	0.166	5	7.502*	0.520	5
HAEMOGLOBIN g/dl	15.22	0.31	5	13.96*	0.92	5
HAEMATOCRIT &	42.80	0.99	5	37.90**	2.75	5
MEAN RED BLOOD CELL VOLUME fl	51.98	0.96	5	50.54	1.13	5
MEAN CORPUSCULAR Hb	18.46	0.23	5	18.64	0.29	5
MEAN CORPUSCULAR Hb CONC.	35.56	0.25	5	36.90**	0.70	5

Controls from group(s): 1 Subgroup(s): 1

Modified t test if group variances are inhomogeneous (\$)

Note: Data for Recovery phase

^{* =} mean value of group is significantly different from control at p < 0.05

^{** =} mean value of group is significantly different from control at p < 0.01

Statistical analysis: Dunnett's test if group variances are homogeneous

TABLE 5.2 - Haematology - At the end of recovery - Group mean data

STUDY NO.:

MALES

	Con	trol		Group 4	
Parameter/units	Mean	SD	n Mea	n SD	n
PLATELETS 10^9/1	926.6	50.9	5 1080.	4 183.0	5
PROTHROMBIN TIME	16.22	0.50	5 17.50	* 0.80	5

Controls from group(s): 1

Subgroup(s): 1

* = mean value of group is significantly different from control at p < 0.05

** = mean value of group is significantly different from control at p < 0.01

Statistical analysis: Dunnett's test if group variances are homogeneous

Modified t test if group variances are inhomogeneous (\$)

Note: Data for Recovery phase

TABLE 5.2 - Haematology - At the end of recovery - Group mean data

STUDY NO.:

MALES

			. ~ ~ ~ ~ .			
	C	ontrol		Gr	oup 4	
Parameter/units	Mean	SD	n	Mean	SD	n

WHITE BLOOD CELL COUNT 10^9/1	10.584	1.786	5	8.920	2.418	5
NEUTROPHILS %	13.66	5.70	5	11.72	8.20	5
LYMPHOCYTES %	81.20	6.51	5	83.02	8.86	5
MONOCYTES %	2.84	0.59	5	3.16	0.55	5
EOSINOPHILS %	1.42	0.75	5	1.08	0.24	5
BASOPHILS %	0.16	0.05	5	0.16	0.05	5
LARGE UNSTAINED CELLS	0.76	0.13	5	0.84	0.11	5

Modified t test if group variances are inhomogeneous (\$)

Note: Data for Recovery phase

rando e in Tra Material de la cara

Controls from group(s): 1 Subgroup(s): 1 * = mean value of group is significantly different from control at p < 0.05

^{** =} mean value of group is significantly different from control at p < 0.01 Statistical analysis: Dunnett's test if group variances are homogeneous

TABLE 5.2 - Haematology - At the end of recovery - Group mean data

STUDY NO.:

FEMALES

	Cor	ntrol		Gro	up 4	
Parameter/units	Mean	SD	n	Mean	SD	n
			~~~~			
RED BLOOD CELL COUNT	7,532	0.201	5	7.058*	0.263	5
10^12/1	7,1002	*****	•	,,,,,		~
10 12/2						
HAEMOGLOBIN	14.40	0.43	5	13.50*	0.55	5
g/dl	13.30	0.43	,	13.50	0.55	~
9/41						
HAEMATOCRIT	39.70	1.05	5	37.50*	1.43	5
#	39.70	1.03	J	37.30	1.45	~
ti .						
MENT DED DIOOD COLL MOTION	52.68	0.54	E	53.12	0.54	5
MEAN RED BLOOD CELL VOLUME	52.08	0.54	3	33.12	0.54	5
fl						
	10.10	0.40	-	10 16	0.44	-
MEAN CORPUSCULAR Hb	19.12	0.43	5	19.16	0.44	5
bà						
			_			_
MEAN CORPUSCULAR Hb CONC.	36.28	0.58	5	36.02	0.58	5
g/dl						

Controls from group(s): 1 Subgroup(s): 1

Statistical analysis: Dunnett's test if group variances are homogeneous

Modified t test if group variances are inhomogeneous (\$)

Note: Data for Recovery phase

 $[\]star$  = mean value of group is significantly different from control at p < 0.05

^{** =} mean value of group is significantly different from control at p < 0.01

## 4-week oral toxicity study in rats followed by a 2 week recovery period

TABLE 5.2 - Haematology - At the end of recovery - Group mean data

STUDY NO.:

#### FEMALES

	Con	trol		Gr	oup 4	
Parameter/units	Mean	SD	n	Mean	SD	n
PLATELETS 10^9/1	894.2	46.1	5	872.8	94.1	5
PROTHROMBIN TIME	16.98	0.45	5	16.38	0.40	5

Controls from group(s): 1 Subgroup(s): 1

* = mean value of group is significantly different from control at p < 0.05 ** = mean value of group is significantly different from control at p < 0.01

Statistical analysis: Dunnett's test if group variances are homogeneous

Modified t test if group variances are inhomogeneous (\$)

TABLE 5.2 - Haematology - At the end of recovery - Group mean data

STUDY NO.:

#### FEMALES

Parameter/units	Co Mean	ontrol SD	n	Gro Mean	oup 4 SD	n
WHITE BLOOD CELL COUNT	8.656	1.684		7.730	0.738	
10^9/1	3.035	1.004	J	7.750	0.738	J
NEUTROPHILS %	8.60	1.02	5	7.84	2.56	5
LYMPHOCYTES %	84.44	0.42	5	86.94	2.46	5
MONOCYTES %	3.98	0.68	5	3.00*	0.46	5
EOSINOPHILS %	1.60	0.48	5	1.04	0.27	5
BASOPHILS %	0.20	0.07	5	0.14	0.05	5
LARGE UNSTAINED CELLS	1.20	0.19	5	1.06	0.48	5

Controls from group(s): 1 Subgroup(s): 1

Modified t test if group variances are inhomogeneous (\$)

 $[\]star$  = mean value of group is significantly different from control at p < 0.05

^{** =} mean value of group is significantly different from control at p < 0.01

Statistical analysis: Dunnett's test if group variances are homogeneous

4-week oral toxicity study in rats followed by a 2 week recovery period

TABLE 6.1 - Clinical chemistry - At the end of treatment - Group mean data

STUDY NO.:

## MALES

		Co	ntrol		Gro	up 2		Gro	up 3			<del></del> up 4	
Parameter/units		Mean	SD	n	Mean	SD	n	Mean	SD	n	Mean	SD	n
ALKALINE PHOSPHATASE U/l		257.92	40.78	5	240.86	15.84	5	303.28	34.38	5	341.82*	61.48	5
ALANINE AMINO-TRANSFERASE U/1	(\$)	31.56	2.81	5	33.94	7.70	5	129.20	103.26	5	100.62**	33.16	5
ASPARTATE AMINO-TRANSFERASE U/1	(\$)	81.10	8.16	5	75.28	7.77	5	127.90	49.84	5	130.30*	33.95	5
GAMMA-GLUTAMYL TRANSFERASE U/1	(\$)	0.220	0.164	5	0.200	0.308	5	0.020	0.045	5	0.060	0.055	5
TOTAL BILIRUBIN mg/dl		0.112	0.015	5	0.074	0.032	5	0.076	0.022	5	0.190**	0.041	5
TOTAL CHOLESTEROL mg/dl		74.32	11.92	5	49.16**	9.84	5	57.02*	7.18	5	78.52	7.62	5
TRIGLYCERIDES mg/dl	(\$)	37.86	9.19	5	27.18	7.78	5	18.50**	1.61	5	36.24	2.37	5
GLUCOSE mg/dl		106.58	14.32	5	121.18	18.14	5	119.38	8.92	5	124.20	7.26	5

Controls from group(s): 1 Subgroup(s): 1

Modified t test if group variances are inhomogeneous (\$)

^{*} = mean value of group is significantly different from control at p < 0.05

^{** =} mean value of group is significantly different from control at p < 0.01

Statistical analysis: Dunnett's test if group variances are homogeneous

TABLE 6.1 - Clinical chemistry - At the end of treatment - Group mean data

STUDY NO.:

## MALES

	~	Co	ntrol		Gr	oup 2		Gro	 up 3		Gro	 up 4	
Parameter/units		Mean	SD	n	Mean	SD	n	Mean	SD	n	Mean	SD	n
UREA mg/dl		45.48	6.14	5	47.68	3.35	5	52.62	4.98	5	67.46**	3.42	5
CREATININE mg/dl		0.336	0.053	5	0.322	0.028	5	0.316	0.037	5	0.298	0.026	5
CHLORIDE mmol/l		92.90	1.00	5	93.60	1.05	5	93.56	0.83	5	94.94**	0.72	5
INORGANIC PHOSPHORUS		8.54	0.33	5	8.56	0.34	5	7.78*	0.27	5	6.68**	0.50	5
CALCIUM mmo1/1	(\$)	2.624	0.077	5	2.636	0.060	5	2.612	0.033	5	2.312	0.337	5
SODIUM nunol/1		144.18	0.54	5	143.00	1.88	5	150.26**	1.25	5	146.10	0.86	5
POTASSIUM mmol/l	(\$)	3.874	0.161	5	3.720	0.072	5	3.996	0.117	5	4.488	0.592	5

Controls from group(s): 1 Subgroup(s): 1

Modified t test if group variances are inhomogeneous (\$)

Note: Data for Dosing phase

Page 75

^{* =} mean value of group is significantly different from control at p < 0.05

** = mean value of group is significantly different from control at p < 0.01

Statistical analysis: Dunnett's test if group variances are homogeneous

TABLE 6.1 - Clinical chemistry - At the end of treatment - Group mean data

STUDY NO.:

#### MALES

		Con	trol			ip 2			up 3			p 4	
Parameter/units		Mean	SD 	n	Mean	SD	n	Mean	SD	n	Mean	SD	n
TOTAL PROTEIN	(\$)	6.46	0.18	5	5.90**	0.19	5	6.16	0.17	5	5.40*	0.60	5
ALBUMIN g/dl		4.00	0.07	5	3.78	0.08	5	3.98	0.15	5	3.50**	0.27	5
GLOBULIN g/dl	(\$)	2.46	0.11	5	2.12*	0.15	5	2.18	0.20	5	1.90	0.49	5
ALBUMIN/GLOBULIN RATIO	(\$)	1.63	0.05	5	1.79	0.12	5	1.84	0.21	5	1.93	0.43	5

Controls from group(s): 1 Subgroup(s): 1

* = mean value of group is significantly different from control at p < 0.05 ** = mean value of group is significantly different from control at p < 0.01

Statistical analysis: Dunnett's test if group variances are homogeneous

Modified t test if group variances are inhomogeneous (\$)

TABLE 6.1 - Clinical chemistry - At the end of treatment - Group mean data

STUDY NO.:

#### FEMALES

		Co	ntrol		Gr	oup 2		Gro	 up 3		Grot	 up 4	
Parameter/units		Mean	SD	n	Mean	SD	n	Mean	SD	n	Mean	SD	n
ALKALINE PHOSPHATASE U/1		207.84	29.86	5	175.63	25.89	4	237.76	25.24	5	220.30	50.65	5
ALANINE AMINO-TRANSFERASE U/l	(\$)	31.14	3.00	5	28.03	3.16	4	44.64	13.94	5	38.86	12.16	5
ASPARTATE AMINO-TRANSFERASE U/1		80.88	14.22	5	73.05	9.34	4	84.20	11.29	5	82.30	12.41	5
GAMMA-GLUTAMYL TRANSFERASE U/l	(\$)	1.320	1.724	5	1.475	0.330	4	0.800	0.300	5	2.340	2.362	5
TOTAL BILIRUBIN mg/dl		0.090	0.017	5	0.063	0.010	4	0.036**	0.015	5	0.060*	0.023	5
TOTAL CHOLESTEROL mg/dl		80.54	12.00	5	70.58	8.98	4	71.34	10.23	5	75.46	12.16	5
TRIGLYCERIDES mg/dl		31.30	7.08	5	26.10	8.46	4	27.72	4.06	5	30.60	6.84	5
GLUCOSE mg/dl		111.58	7.99	5	105.65	14.48	4	117.06	10.03	5	133.80**	6.47	5

Subgroup(s): 1 Controls from group(s): 1

Modified t test if group variances are inhomogeneous (\$)

^{* =} mean value of group is significantly different from control at p < 0.05
** = mean value of group is significantly different from control at p < 0.01
Statistical analysis: Dunnett's test if group variances are homogeneous

TABLE 6.1 - Clinical chemistry - At the end of treatment - Group mean data

STUDY NO.:

## FEMALES

		ontrol		Gr	oup 2		Gre	oup 3		Gr	oup 4	
Parameter/units	Mean	SD	n	Mean	SD	n	Mean	SD	n	Mean	SD	n
UREA mg/dl	48.90	5.99	5	47.38	2.17	4	49.30	6.86	5	60.84*	9.13	5
CREATININE mg/dl	0.446	0.042	5	0.410	0.050	4	0.424	0.024	5	0.380*	0.035	5
CHLORIDE mmol/l	94.34	0.96	5	95.58	1.19	4	96.54*	1.31	5	96.00	1.03	5
INORGANIC PHOSPHORUS mg/dl	7.47	0.37	5	7.51	0.36	4	6.97	0.37	5	6.79*	0.42	5
CALCIUM mmol/l	2.614	0.032	5	2.705	0.054	4	2.590	0.137	5	2.664	0.092	5
SODIUM mmol/1	143.94	0.59	5	143.45	0.91	4	145.66	0.75	5	143.68	1.67	5
POTASSIUM numol/l	3.700	0.454	5	3.605	0.131	4	3.434	0.304	5	3.552	0.296	5

Subgroup(s): 1 Controls from group(s): 1

Modified t test if group variances are inhomogeneous (\$)

^{* =} mean value of group is significantly different from control at p < 0.05 ** = mean value of group is significantly different from control at p < 0.01

Statistical analysis: Dunnett's test if group variances are homogeneous

TABLE 6.1 - Clinical chemistry - At the end of treatment - Group mean data

STUDY NO.:

## FEMALES

Parameter/units	Con Mean	trol SD	n	Gro Mean	oup 2 SD	n	Gro Mean	up 3 SD	n	Grou Mean	ıp 4 SD	n
TOTAL PROTEIN g/dl	6.26	0.21	5	6.40	0.27	4	6.60	0.16	5	6.26	0.23	5
ALBUMIN g/dl	4.16	0.15	5	4.18	0.21	4	4.40	0.16	5	4.38	0.18	5
g/dl	2.10	0.23	5	2.23	0.17	4	2.20	0.12	5	1.88	0.13	5
ALBUMIN/GLOBULIN RATIO	2.00	0.25	5	1.89	0.18	4	2.01	0.16	5	2.34*	0.18	5

Controls from group(s): 1

Subgroup(s): 1

* = mean value of group is significantly different from control at p < 0.05** = mean value of group is significantly different from control at p < 0.01

Statistical analysis: Dunnett's test if group variances are homogeneous

Modified t test if group variances are inhomogeneous (\$)

4-week oral toxicity study in rats followed by A 2 week recovery period

TABLE 6.2 - Clinical chemistry - At the end of recovery - Group mean data

STUDY NO.:

## MALES

	Cor	ntrol		Gro	 up 4	
Parameter/units	Mean	SD	n	Mean	SD	n
ALKALINE PHOSPHATASE U/1	216.20	21.08	5	305.44**	33.60	5
ALANINE AMINO-TRANSFERASE U/1	31.98	1.84	5	35.18	10.68	5
ASPARTATE AMINO-TRANSFERASE U/1	61.48	1.95	5	60.84	8.69	5
GAMMA-GLUTAMYL TRANSFERASE U/l	1.120	0.936	5	0.960	0.472	5
TOTAL BILIRUBIN mg/dl	0.128	0.026	5	0.198	0.091	5
TOTAL CHOLESTEROL mg/dl	75.56	7.98	5	132.76**	22.36	5
TRIGLYCERIDES mg/dl	42.64	4.75	5	23.54**	5.64	5
GLUCOSE mg/dl	119.62	4.00	5	144.10	23.60	5

Controls from group(s): 1 Subgroup(s): 1

Statistical analysis: Dunnett's test if group variances are homogeneous

Modified t test if group variances are inhomogeneous (\$)



^{* =} mean value of group is significantly different from control at p < 0.05

^{** =} mean value of group is significantly different from control at p < 0.01

4-week oral toxicity study in rats followed by a 2 week recovery period

TABLE 6.2 - Clinical chemistry - At the end of recovery - Group mean data

STUDY NO.:

#### MALES

Parameter/units	Mean	ontrol SD	n	Gro Mean	up 4 SD	n
UREA mg/dl	44.52	6.76	5	60.12**	7.29	5
CREATININE mg/dl	0.348	0.037	5	0.230**	0.024	5
CHLORIDE mmo1/1	92.92	0.68	5	94.24	1.44	5
INORGANIC PHOSPHORUS	8.12	0.18	5	7.00	1.09	5
CALCIUM mmol/1	2.686	0.115	5	2.548	0.225	5
SODIUM mmol/l	147.22	0.53	5	144.14**	1.55	5
POTASSIUM mmol/l	4.278	0.249	5	4.490	0.740	5

Controls from group(s): 1 Subgroup(s): 1 * = mean value of group is significantly different from control at p < 0.05 Controls from group(s): 1

^{** =} mean value of group is significantly different from control at p < 0.01

Statistical analysis: Dunnett's test if group variances are homogeneous

Modified t test if group variances are inhomogeneous (\$)

TABLE 6.2 - Clinical chemistry - At the end of recovery - Group mean data

STUDY NO.:

## MALES

	Cont	trol		Grou	 ip 4	
Parameter/units	Mean	SD	n	Mean		n
TOTAL PROTEIN g/dl	6.46	0.09	5	5.74*	0.51	5
ALBUMIN g/dl	3.88	0.11	5	3.84	0.35	5
GLOBULIN g/dl	2.58	0.18	5	1.90**	0.19	5
ALBUMIN/GLOBULIN RATIO	1.51	0.13	5	2.02**	0.12	5

Controls from group(s): 1

Controls from group(s): 1 Subgroup(s): 1 * = mean value of group is significantly different from control at p < 0.05

** = mean value of group is significantly different from control at p < 0.01

Statistical analysis: Dunnett's test if group variances are homogeneous

Modified t test if group variances are inhomogeneous (\$)

TABLE 6.2 - Clinical chemistry - At the end of recovery - Group mean data

STUDY NO.:

#### FEMALES

		ntrol		Gro	 up 4	
Parameter/units	Mean	SD	n		SD	n
ALKALINE PHOSPHATASE U/l	164.40	14.39	5	140.74	23.33	5
ALANINE AMINO-TRANSFERASE	26.48	2.80	5	28.76	4.51	5
ASPARTATE AMINO-TRANSFERASE U/1	76.22	5.99	5	54.30**	1.46	5
GAMMA-GLUTAMYL TRANSFERASE U/l	1.260	0.716	5	0.920	0.729	5
TOTAL BILIRUBIN mg/dl	0.164	0.009	5	0.104**	0.015	5
TOTAL CHOLESTEROL mg/dl	70.06	15.54	5	78.08	3.46	5
TRIGLYCERIDES mg/dl	43.54	5.36	5	31.58**	4.86	5
GLUCOSE mg/dl	103.74	6.41	5	135.78*	22.68	5

Controls from group(s): 1 Subgroup(s): 1

Modified t test if group variances are inhomogeneous (\$)

^{* =} mean value of group is significantly different from control at p < 0.05

^{** =} mean value of group is significantly different from control at p < 0.01

Statistical analysis: Dunnett's test if group variances are homogeneous

TABLE 6.2 - Clinical chemistry - At the end of recovery - Group mean data

STUDY NO.:

#### FEMALES

Parameter/units	C Mean	ontrol SD	n	Gro Mean	up 4 SD	n
UREA mg/dl	67.82	7.50	5	61.06	9.77	5
CREATININE mg/dl	0.552	0.067	5	0.358**	0.041	5
CHLORIDE mmo1/1	95.00	0.48	5	93.88*	0.91	5
INORGANIC PHOSPHORUS	7.32	0.32	5	6.80*	0.18	5
CALCIUM mmol/l	2.690	0.053	5	2.734	0.154	5
SODIUM mmo1/1	147.92	0.51	5	145.48**	0.62	5
POTASSIUM mmol/l	3.322	0.240	5	3.722*	0.220	5

Controls from group(s): 1

Controls from group(s): 1 Subgroup(s): 1 * = mean value of group is significantly different from control at p < 0.05

^{** =} mean value of group is significantly different from control at p < 0.01

Statistical analysis: Dunnett's test if group variances are homogeneous

Modified t test if group variances are inhomogeneous (\$)

TABLE 6.2 - Clinical chemistry - At the end of recovery - Group mean data

STUDY NO.:

#### FEMALES

	Cont	trol		Gro	up 4	
Parameter/units	Mean	SD	n	Mean	SD	n
TOTAL PROTEIN g/dl	6.20	0.25	5	6.40	0.36	5
ALBUMIN g/dl	4.12	0.15	5	4.50*	0.32	5
GLOBULIN g/dl	2.08	0.19	5	1.90	0.16	5
ALBUMIN/GLOBULIN RATIO	1.99	0.20	5	2.38*	0.25	5

Subgroup(s): 1 Controls from group(s): 1

* = mean value of group is significantly different from control at p < 0.05 ** = mean value of group is significantly different from control at p < 0.01

Statistical analysis: Dunnett's test if group variances are homogeneous

Modified t test if group variances are inhomogeneous (\$)

TABLE 7.1 - Urinalysis - At the end of treatment - Group mean data

STUDY NO.:

## MALES

		Control			Group 2		Gr	Group 3 Group 4		oup 4		
Parameter/units	Mean	SD	n	Mean	SD	n	Mean	SD	n	Mean	SD	n
URINE VOLUME (OVERNIGHT)	5.80	0.57	5	6.60	0.96	5	6.80	1.35	5	7.00	0.79	5
SPECIFIC GRAVITY	1.0180	0.0045	5	1.0230	0.0045	5	1.0120	0.0057	5	1.0150	0.0035	5

Controls from group(s): 1

* = mean value of group is significantly different from control at p < 0.05

** = mean value of group is significantly different from control at p < 0.01

Statistical analysis: Dunnett's test if group variances are honogeneous

Modified t test if group variances are inhomogeneous (\$)

TABLE 7.1 - Urinalysis - At the end of treatment - Group mean data

STUDY NO.:

#### FEMALES

Control					Group 2		~~	Group 3		Group 4		
Parameter/units	Mean	SD	n	Mean	SD SD	n	Mean	SD SD	n	Mean	SD SD	n
URINE VOLUME (OVERNIGHT)	6.30	0.91	5	7.25	1.94	4	4.80	1.82	5	4.20	1.79	5
SPECIFIC GRAVITY	1.0150	0.0035	5	1.0175	0.0029	4	1.0220	0.0057	5	1.0270**	0.0067	5

Controls from group(s): 1

Subgroup(s): 1

* = mean value of group is significantly different from control at p < 0.05

** = mean value of group is significantly different from control at p < 0.01

Statistical analysis: Dunnett's test if group variances are homogeneous

Modified t test if group variances are inhomogeneous (\$)

TABLE 7.2 - Urinalysis - At the end of recovery - Group mean data

STUDY NO.:

#### MALES

	Co:	ntrol		Gr	 oup 4	
Parameter/units	Mean		n	Mean	SD	n
URINE VOLUME (OVERNIGHT) ml	8.60	3.49	5	7.10	3.17	5
SPECIFIC CRAVITY	1 0090	0 0022	5	1.0190*	0.0065	5

Controls from group(s): 1

* = mean value of group is significantly different from control at p < 0.05

** = mean value of group is significantly different from control at p < 0.01

Statistical analysis: Dunnett's test if group variances are homogeneous

Modified t test if group variances are inhomogeneous (\$)

# 4-week oral toxicity study in rats followed by a 2 week recovery period

TABLE 7.2 - Urinalysis - At the end of recovery - Group mean data

STUDY NO.:

#### FEMALES

	 Co	ntrol		Gr	oup 4	
Parameter/units	Mean	SD	n	Mean	SD	n
URINE VOLUME (OVERNIGHT)	3.40	1.67	5	5.50	2.24	5
ml						
SPECIFIC GRAVITY	1.0210	0.0074	5	1.0270	0.0045	5

Controls from group(s): 1 Subgroup(s): 1

* = mean value of group is significantly different from control at p < 0.05

** = mean value of group is significantly different from control at p < 0.01

Statistical analysis: Dunnett's test if group variances are homogeneous

Modified t test if group variances are inhomogeneous (\$)

TABLE 8.1 - Terminal body weight (g) - Final sacrifice - Group mean data

STUDY NO.:

MALES

Controls from g	roup(s): 1	Data homogeneous by Bar	tlett's test (Dunnett'	s test)	
Group	Control	2	3	4	
Number/group	5	5	5	5	
Mean	346.94	333.88	341.18	277.10	
Standard deviation	9.70	14.30	10.75	24.25	
Group diff. at $p < 0.05$		25.95	25.95	25.95*	
Group diff. at $p < 0.01$		33.94	33.94	33.94*	

Analysis of variance: F ratio = 20.73 Df = 3/16 F probability = 0.000 Note: a * indicates group mean is significantly different from control at level of significance shown.

TABLE 8.1 - Terminal body weight (g) - Final sacrifice - Group mean data

STUDY NO.:

FEMALES

Controls from gro	oup(s): 1	Data homogeneous by Bart	:lett's test (Dunnett'	s test)	
Group	Control	2	3	4	
Number/group	5	4	5	5	
Mean	221.56	221.05	212.82	196.14	
Standard deviation	10.62	8.38	11.21	8.83	
Group diff. at p < 0.05		17.37	16.38	16.38*	
Group diff. at p < 0.01		. 22.81	21.51	21.51*	

Analysis of variance: F ratio = 6.91 Df = 3/15 F probability = 0.004 Note: a * indicates group mean is significantly different from control at level of significance shown.

TABLE 8.2 - Terminal body weight (g) - Recovery sacrifice - Group mean data

STUDY NO.:

MALES

<pre>Controls from group(s):</pre>	1 Data homogeneous by Ba	rtlett's test (Dunnett's test)	
Group	Control	4	
Number/group	5	5	
Mean	364.66	273.60	
Standard deviation	18.41	31.02	
Group diff. at p < 0.05		37.32*	
Group diff. at p < 0.01		54.31*	

Analysis of variance: F ratio = 31.86 Df = 1/8 F probability = 0.001 Note: a * indicates group mean is significantly different from control at level of significance shown.

TABLE 8.2 - Terminal body weight (g) - Recovery sacrifice - Group mean data

STUDY NO.:

FEMALES

Controls from group(s): 1 Data homogeneous by Bartlett's test (Dunnett's test)

Analysis of variance: F ratio = 15.62 Df = 1/8 F probability = 0.004 Note: a * indicates group mean is significantly different from control at level of significance shown.

TABLE 9.1 - Absolute organ weights (g) - Final sacrifice - Group mean data

STUDY NO.:

MALES

Organ: Adrenals	Controls from group: 1	Data inhomogened	ous by Bartlett's test	(Modified t test)	
Group Number/group Mean Standard deviation Group diff. at p < 0.05 Group diff. at p < 0.01	Control 5 0.0486 0.0099	2 5 0.0498 0.0029 0.0128 0.0213	3 5 0.0500 0.0125 0.0198 0.0330	4 5 0.0428 0.0035 0.0130 0.0217	

Analysis of variance: F ratio = 0.84 Df = 3/16 F probability = 0.495 Note: a * indicates group mean is significantly different from control at level of significance shown.

Organ: Brain	Controls from group: 1	Data homogeneous	s by Bartlett's test	(Dunnett's test)	
Group Number/group Mean Standard deviation Group diff. at p < 0.05 Group diff. at p < 0.01	Control 5 1.806 0.050	2 5 1.806 0.054 0.094 0.123	3 5 1.824 0.023 0.094 0.123	4 5 1.761 0.085 0.094 0.123	

Analysis of variance: F ratio = 1.10 Df = 3/16 F probability = 0.380 Note: a * indicates group mean is significantly different from control at level of significance shown.

TABLE 9.1 - Absolute organ weights (g) - Final sacrifice - Group mean data

STUDY NO.:

MALES

MALES

Organ: Epididymides	Controls from group: 1	Data homogeneou	s by Bartlett's test	(Dunnett's test)	
Group Number/group Mean Standard deviation Group diff. at p < 0.05 Group diff. at p < 0.01	Control 5 1.0898 0.0381	2 5 1.1072 0.0851 0.1155 0.1510	3 5 1.0976 0.0871 0.1155 0.1510	4 5 1.0682 0.0598 0.1155 0.1510	

Analysis of variance: F ratio = 0.28 Df = 3/16 F probability = 0.841 Note: a * indicates group mean is significantly different from control at level of significance shown.

Group Control 2 3 4 Number/group 5 5 5 5 Mean 1.234 1.168 1.233 0.917 Standard deviation 0.080 0.070 0.068 0.096 Convenient to 0.05 0.130 0.130*	Organ: Heart	Controls from group: 1	Data homogeneou	s by Bartlett's test	(Dunnett's test)	
Group diff. at p < 0.01 0.170 0.170 0.170*	Number/group Mean Standard deviation Group diff. at p < 0.05	5 1.234	0.070 0.130	0.068 0.130	0.096 0.130*	

Analysis of variance: F ratio = 18.10 Df = 3/16 F probability = 0.000 Note: a * indicates group mean is significantly different from control at level of significance shown.

TABLE 9.1 - Absolute organ weights (g) - Final sacrifice - Group mean data

STUDY NO.:

MALES

Organ: Kidneys	Controls from group: 1	Data homogeneo	us by Bartlett's test	(Dunnett's test)	
Group	Control	2	3	4	
Number/group	5	5	5	5	
Mean	2,145	2.140	2.358	2.087	
Standard deviation	0.087	0.091	0.173	0.220	
Group diff. at $p < 0.05$		0.251	0.251	0.251	
Group diff. at $p < 0.01$		0.329	0.329	0.329	

Analysis of variance: F ratio = 3.06 Df = 3/16 F probability = 0.058Note: a * indicates group mean is significantly different from control at level of significance shown.

Organ: Liver	Controls from group: 1	Data homogeneou	s by Bartlett's test	(Dunnett's test)	
Group	Control	2	3	4	
Number/group	5	5	5	5	
Mean	9.251	10.462	14.270	16.995	
Standard deviation	0.638	0.799	0.837	1.345	
Group diff. at p < 0.05		1.546	1.546*	1.546*	
Group diff. at p < 0.01		2.021	2.021*	2.021*	

Analysis of variance: F ratio = 70.90 Df = 3/16 F probability = 0.000Note: a * indicates group mean is significantly different from control at level of significance shown.



TABLE 9.1 - Absolute organ weights (g) - Final sacrifice - Group mean data

STUDY NO.:

MALES

Organ: Spleen	Controls from group: 1	Data homogeneou	us by Bartlett's test	(Dunnett's test)	
Group	Control	2	3	4	
Number/group	5	5	5	5	
Mean	0.8874	0.8012	0.8090	0.5482	
Standard deviation	0.0717	0.1129	0.1089	0.1099	
Group diff. at p < 0.05		0.1677	0.1677	0.1677*	
Group diff. at p < 0.01		0.2193	0.2193	0.2193*	

Analysis of variance: F ratio = 10.39 Df = 3/16 F probability = 0.001 Note: a * indicates group mean is significantly different from control at level of significance shown.

Organ: Testes	Controls from group: 1	Data homogeneo	us by Bartlett's test	(Dunnett's test)	
Group	Control	2	3	4	
Number/group Mean	5 3.7378	5 3.7782	3.7664	3.6210	
Standard deviation	0.2163	0.1372 0.3103	0.2113 0.3103	0.1819 0.3103	
Group diff. at $p < 0.05$ Group diff. at $p < 0.01$		0.4059	0.4059	0.4059	

Analysis of variance: F ratio = 0.72 Df = 3/16 F probability = 0.556 Note: a * indicates group mean is significantly different from control at level of significance shown.

## 4-week oral toxicity study in rats followed by a 2 week recovery period

TABLE 9.1 - Absolute organ weights (g) - Final sacrifice - Group mean data

STUDY NO.:

MALES

Organ: Thymus	Controls from group: 1	Data homogeneo	us by Bartlett's test	(Dunnett's test)	
Group	Control	2	3	4	
Number/group	5	5	5	5	
Mean	0.5252	0.5508	0.5460	0.3096	
Standard deviation	0.0645	0.1063	0.0619	0.1004	
Group diff. at p < 0.05		0.1405	0.1405	0.1405*	
Group diff. at p < 0.01		0.1837	0.1837	0.1837*	

Analysis of variance: F ratio = 9.17 Df = 3/16 F probability = 0.001

Group	Control	2	3	4	
Number/group	5	5	5	5	
Mean	0.0250	0.0258	0.0268	0.0252	
Standard deviation	0.0025	0.0029	0.0004	0.0024	
Froup diff. at p < 0.05		0.0048	0.0032	0.0043	
Group diff. at p < 0.01		0.0081	0.0054	0.0072	

### 4-week oral toxicity study in rats followed by a 2 week recovery period

TABLE 9.1 - Absolute organ weights (g) - Final sacrifice - Group mean data

STUDY NO.:

FEMALES

Organ: Adrenals	Controls from group: 1	Data inhomogene	eous by Bartlett's test	(Modified t test)	
Group	Control	2	3	4	
Number/group	5	4	5	5	
Mean	0.0648	0.0590	0.0672	0.0550	
Standard deviation	0.0013	0.0036	0.0112	0.0082	
Group diff. at p < 0.05		0.0059	0.0140	0.0103	
Group diff. at p < 0.01		0.0108	0.0233	0.0171	

Analysis of variance: F ratio = 2.80 Df = 3/15 F probability = 0.075

Note: a * indicates group mean is significantly different from control at level of significance shown.

Organ: Brain	Controls from group: 1	Data homogeneou:	s by Bartlett's test (I	Ounnett's test)
Group	Control	2	3	4
Number/group	5	4	5	5
Mean	1.669	1.642	1.679	1.620
Standard deviation	0.064	0.037	0.042	0.062
Group diff. at p < 0.05		0.094	0.088	0.088
Group diff. at p < 0.01		0.123	0.116	0.116

Analysis of variance: F ratio = 1.25 Df = 3/15 F probability = 0.328

TABLE 9.1 - Absolute organ weights (g) - Final sacrifice - Group mean data

STUDY NO.:

FEMALES

_______

Organ: Heart	Controls from group: 1	Data homogeneou	s by Bartlett's test	(Dunnett's test)
Group	Control	2	3	4
Number/group	5	4	5	5
Mean	0.858	0.832	0.835	0.759
Standard deviation	0.076	0.107	0.032	0.102
Group diff. at p < 0.05		0.145	0.137	0.137
Group diff, at p < 0.01		0.190	0.179	0.179

Analysis of variance: F ratio = 1.34 Df = 3/ 15 F probability = 0.299

Organ: Kidneys	Controls from group: 1	Data homogeneou	s by Bartlett's test	(Dunnett's test)	
Group	Control	2	3	4	
Number/group	5	4	5	5	
Mean	1.414	1.377	1.432	1.416	
Standard deviation	0.112	0.116	0.058	0.097	
Group diff. at p < 0.05		0.170	0.161	0.161	
Group diff. at $p < 0.01$		0.224	0.211	0.211	
Analysis of variance: F r Note: a * indicates group				ance chown	

TABLE 9.1 - Absolute organ weights (g) - Final sacrifice - Group mean data

STUDY NO.:

FEMALES

Organ: Liver	Controls from group: 1	Data homogeneou	s by Bartlett's test (Du	nnett's test)	
Group	Control	2	3	4	
Number/group	5	4	5	5	
Mean	5.865	5.942	6.518	8.540	
Standard deviation	0.407	0.410	0.359	0.438	
Group diff. at p < 0.05		0.708	0.667	0.667*	
Group diff. at p < 0.01		0.929	0.876	0.876*	

Analysis of variance: F ratio = 46.60 Df = 3/15 F probability = 0.000

Organ: Ovaries	Controls from group: 1	Data homogeneo	us by Bartlett's test	(Dunnett's test)	
Group	Control	2	3	4	
Number/group	5	4	5	5	
Mean	0.1274	0.1140	0.1186	0.1168	
Standard deviation	0.0153	0.0181	0.0159	0.0110	
Group diff. at p < 0.05		0.0265	0.0249	0.0249	
Group diff. at $p < 0.01$		0.0347	0.0328	0.0328	
	ratio = 0.69 Df = 3				
	mean is significantly diff			ance shown.	

TABLE 9.1 - Absolute organ weights (g) - Final sacrifice - Group mean data

STUDY NO.:

FEMALES

Organ: Spleen	Controls from group: 1	Data homogeneo	us by Bartlett's test	(Dunnett's test)	
Group	Control	2	3	4	**************************************
Number/group	5	4	5	5	
Mean	0.6978	0.6058	0.5358	0.4474	
Standard deviation	0.0848	0.1240	0.0461	0.0487	
Group diff. at $p < 0.05$		0.1378	0.1299*	0.1299*	
Group diff. at p < 0.01		0.1809	0.1706	0.1706*	

Analysis of variance: F ratio = 9.03 Df = 3/15 F probability = 0.001 Note: a * indicates group mean is significantly different from control at level of significance shown.

Organ: Thymus	Controls from group: 1	Data homogeneou	s by Bartlett's test	(Dunnett's test)	
Group	Control	2	3	4	
Number/group	5	4	5	5	
Mean	0.3754	0.3908	0.4076	0.3210	
Standard deviation	0.0511	0.0663	0.0643	0.0215	
Group diff. at p < 0.05		0.0927	0.0874	0.0874	
Group diff. at p < 0.01		0.1217	0.1147	0.1147	

Analysis of variance: F ratio = 2.47 Df = 3/15 F probability = 0.101 Note: a * indicates group mean is significantly different from control at level of significance shown.

TABLE 9.1 - Absolute organ weights (g) - Final sacrifice - Group mean data

STUDY NO.:

FEMALES

Organ: Thyroid	Controls from group: 1	Data homogeneo	us by Bartlett's test	(Dunnett's test)	
Group	Control	2	3	4	
Number/group	5	4	5	5	
Mean	0.0146	0.0160	0.0148	0.0148	
Standard deviation	0.0029	0.0018	0.0019	0.0013	
Group diff. at $p < 0.05$		0.0036	0.0034	0.0034	
Group diff. at $p < 0.01$		0.0048	0.0045	0.0045	
Analysis of variance: F	ratio = 0.40 Df = 3	/ 15 F probab	ility = 0.757		

TABLE 9.2 - Absolute organ weights (g) - Recovery sacrifice - Group mean data

STUDY NO.:

MALES

______

Organ: Adrenals	Controls from group: 1 Data homoge	neous by Bartlett's test (Dunnett's test)
Group	Control	4
Number/group	5	5
Mean	0.0494	0.0456
Standard deviation	0.0095	0.0101
Group diff. at p < 0.05		0.0144
Group diff. at p < 0.01	, , , , , , , , , , , , , , , , , , ,	0.0209

Analysis of variance: F ratio = 0.37 Df = 1/8 F probability = 0.563

Note: a * indicates group mean is significantly different from control at level of significance shown.

Organ: Brain	Controls from group: 1 Data homoge	neous by Bartlett's test (Dunnett's test)
Group	Control	4
Number/group	5	5
Mean	1.773	1.661
Standard deviation	0.045	0.077
Group diff. at $p < 0.05$		0.093*
Group diff. at p < 0.01		0.135

Analysis of variance: F ratio = 7.77 Df = 1/8 F probability = 0.023

Note: a * indicates group mean is significantly different from control at level of significance shown.

_______

TABLE 9.2 - Absolute organ weights (g) - Recovery sacrifice - Group mean data

STUDY NO.:

MALES

Organ: Epididymides	Controls from group: 1 Data homogeneou	us by Bartlett's test (Dunnett's test)
Group	Control	4
Number/group	5	5
Mean	1.1990	0.9824
Standard deviation	0.1162	0.1777
Group diff. at $p < 0.05$		0.2197
Group diff. at $p < 0.01$		0.3197

Analysis of variance: F ratio = 5.20 Df = 1/ 8 F probability = 0.050

Note: a * indicates group mean is significantly different from control at level of significance shown.

Organ: Heart	Controls from group: 1 Data hom	mogeneous by Bartlett's test (Dunnett's test)
Group	Control	4
Number/group	5	5
Mean	1.217	0.897
Standard deviation	0.048	0.139
Group diff. at $p < 0.05$		0.152*
Group diff. at $p < 0.01$		0.222*
	ratio = 23.63 Df = 1/8 F mean is significantly different from	probability = 0.001 control at level of significance shown.

______



4-week oral toxicity study in rats followed by a 2 week recovery period

TABLE 9.2 - Absolute organ weights (g) - Recovery sacrifice - Group mean data

STUDY NO.:

MALES

Organ: Kidneys	Controls from group: 1 Data homogeneous	s by Bartlett's test (Dunnett's test)
Group	Control	4
Number/group	5	5
Mean	2.152	2,089
Standard deviation	0.178	0.295
Group diff. at $p < 0.05$		0.357
Group diff. at $p < 0.01$		0.519

Analysis of variance: F ratio = 0.17 Df = 1/8 F probability = 0.694 Note: a * indicates group mean is significantly different from control at level of significance shown.

Organ: Liver	Controls from group: 1 Data	homogeneous by Bartlett's test (Dunnett's test)
Group	Control	4
Number/group	5	5
Mean	9.188	17.336
Standard deviation	0.931	1.733
Group diff. at $p < 0.05$		2.035*
Group diff. at $p < 0.01$		2.962*
Analysis of variance: F	ratio = 85.76 Df = 1/ 8	F probability = 0.000

TABLE 9.2 - Absolute organ weights (g) - Recovery sacrifice - Group mean data

STUDY NO.:

MALES

Organ: Spleen	Controls from group: 1 Data homogeneous	by Bartlett's test (Dunnett's test)	
Group	Control	4	•
Number/group	5	5	
Mean	0.8638	0.5860	
Standard deviation	0.1165	0.0570	
Group diff. at $p < 0.05$		0.1342*	
Group diff. at p < 0.01		0.1953*	

Analysis of variance: F ratio = 22.94 Df = 1/8 F probability = 0.001

Note: a * indicates group mean is significantly different from control at level of significance shown.

Organ: Testes	Controls from group: 1 Data homogeneou	us by Bartlett's test (Dunnett's test)
Group	Control	4
Number/group	5	5
Mean	3.7084	3.4254
Standard deviation	0.1403	0.3016
Group diff. at $p < 0.05$		0.3441
Group diff. at $p < 0.01$		0.5008

Analysis of variance: F ratio = 3.62 Df = 1/8 F probability = 0.091

TABLE 9.2 - Absolute organ weights (g) - Recovery sacrifice - Group mean data

STUDY NO.:

MALES

Organ: Thymus	Controls from group: 1 Data homogeneous	by Bartlett's test (Dunnett's test)	
Group	Control	4	-
Number/group	5	5	
Mean	0.4750	0.3146	
Standard deviation	0.0472	0.1459	
Group diff. at p < 0.05		0.1586*	
Group diff. at p < 0.01		0.2308	

Analysis of variance: F ratio = 5.47 Df = 1/8 F probability = 0.046 Note: a * indicates group mean is significantly different from control at level of significance shown.

Organ: Thyroid	Controls from group: 1 Data homogeneou	s by Bartlett's test (Dunnett's test)
Group	Control	4
Number/group	5	5
Mean	0.0198	0.0220
Standard deviation	0.0033	0.0060
Group diff. at p < 0.05		0.0071
Group diff. at $p < 0.01$	•	0.0103

Analysis of variance: F ratio = 0.52 Df = 1/8 F probability = 0.497 Note: a * indicates group mean is significantly different from control at level of significance shown.



TABLE 9.2 - Absolute organ weights (g) - Recovery sacrifice - Group mean data

STUDY NO.:

FEMALES

Organ: Adrenals	Controls from group: 1 Data homogeneous	by Bartlett's test (Dunnett's test)	
Group	Control	4	
Number/group	5	5	
Mean	0.0552	0.0516	
Standard deviation	0.0090	0.0047	
Group diff. at $p < 0.05$		0.0105	
Group diff. at $p < 0.01$		0.0154	

Analysis of variance: F ratio = 0.62 Df = 1/8 F probability = 0.457

Note: a * indicates group mean is significantly different from control at level of significance shown.

Organ: Brain	Controls from group:	1 Data	homogeneous by Bartlett's t	est (Dunnett's test)
Group	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Control		4
Number/group		5		5
Mean		1.660		1.642
Standard deviation		0.074		0.059
Group diff. at $p < 0.05$				0.098
Group diff. at p < 0.01				0.143
Analysis of variance: F	ratio = 0.18 Df =	1/ 8	F probability = 0.687	

Note: a * indicates group mean is significantly different from control at level of significance shown.

TABLE 9.2 - Absolute organ weights (g) - Recovery sacrifice - Group mean data

STUDY NO.:

Group diff. at p < 0.01

FEMALES

______

Organ: Heart Controls from group: 1 Data homogeneous by Bartlett's test (Dunnett's test) Control Group 5 Number/group 5 0.808 0.734 Mean Standard deviation 0.037 0.032 Group diff. at p < 0.05 0.050* Group diff. at p < 0.01 0.073*

Analysis of variance: F ratio = 11.55 Df = 1/8 F probability = 0.009 Note: a * indicates group mean is significantly different from control at level of significance shown.

 Organ: Kidneys
 Controls from group:
 1
 Data homogeneous by Bartlett's test (Dunnett's test)

 Group
 Control
 4

 Number/group
 5
 5

 Mean
 1.359
 1.399

 Standard deviation
 0.082

 Group diff. at p < 0.05</td>
 0.092

Analysis of variance: F ratio = 0.98 Df = 1/8 F probability = 0.353 Note: a * indicates group mean is significantly different from control at level of significance shown.

0.134

TABLE 9.2 - Absolute organ weights (g) - Recovery sacrifice - Group mean data

STUDY NO.:

FEMALES

Organ: Liver	Controls from group: 1 Data homogeneou	s by Bartlett's test (Dunnett's test)
Group	Control	4
Number/group	5	5
Mean	5.413	8.420
Standard deviation	0.167	0.144
Group diff. at p < 0.05		0.228*
Group diff. at $p < 0.01$		0.332*

Analysis of variance: F ratio = 929.52 Df = 1/8 F probability = 0.000

Note: a * indicates group mean is significantly different from control at level of significance shown.

Organ: Ovaries	Controls from group: 1 Data homogeneo	us by Bartlett's test (Dunnett's test)	
Group	Control	4	
Number/group	5	5	
Mean	0.1162	0.1046	
Standard deviation	0.0063	0.0158	
Group diff. at $p < 0.05$		0.0176	
Group diff. at $p < 0.01$		0.0256	

Analysis of variance: F ratio = 2.32 Df = 1/8 F probability = 0.164

Note: a * indicates group mean is significantly different from control at level of significance shown.

TABLE 9.2 - Absolute organ weights (g) - Recovery sacrifice - Group mean data

STUDY NO.:

FEMALES

 Group
 Control
 4

 Number/group
 5
 5

 Mean
 0.6078
 0.5278

 Standard deviation
 0.0684
 0.0244

 Group diff. at p < 0.05</td>
 0.0751*

 Group diff. at p < 0.01</td>
 0.1093

Analysis of variance: F ratio = 6.08 Df = 1/8 F probability = 0.038

Note: a * indicates group mean is significantly different from control at level of significance shown.

 Organ: Thymus
 Controls from group:
 1
 Data homogeneous by Bartlett's test (Dunnett's test)

 Group
 Control
 4

 Number/group
 5
 5

 Mean
 0.3898
 0.3382

 Standard deviation
 0.0443

 Group diff. at p < 0.05</td>
 0.1392

Analysis of variance: F ratio = 0.74 Df = 1/8 F probability = 0.420

Note: a * indicates group mean is significantly different from control at level of significance shown.

0.2025



Group diff. at p < 0.01

TABLE 9.2 - Absolute organ weights (g) - Recovery sacrifice - Group mean data

STUDY NO.:

FEMALES

Organ: Thyroid	Controls from group: 1 Data homogeneous	by Bartlett's test (Dunnett's test)	
Group	Control	4	
Number/group	5	5	
Mean	0.0182	0.0196	
Standard deviation	0.0054	0.0050	
Group diff. at $p < 0.05$		0.0076	
Group diff. at p < 0.01		0-0111	

Analysis of variance: F ratio = 0.18 Df = 1/8 F probability = 0.683 Note: a * indicates group mean is significantly different from control at level of significance shown.

Accept a final cases group mean is significantly different from control at level of significance shown.

TABLE 10.1 - Relative organ weights - Final sacrifice - Group mean data

STUDY NO.:

MALES

Organ: Adrenals	Controls from group: 1	Data inhomogene	eous by Bartlett's test	(Modified t test)	
Group	Control	2	3	4	
Number/group	5	5	5	5	
Mean	0.0140	0.0149	0.0146	0.0155	
Standard deviation	0.0029	0.0011	0.0033	0.0008	
Group diff. at p < 0.05		0.0039	0.0055	0.0038	
Group diff. at p < 0.01		0.0065	0.0091	0.0063	

Analysis of variance: F ratio = 0.34 Df = 3/ 16 F probability = 0.797 Note: a * indicates group mean is significantly different from control at level of significance shown.

Organ: Brain	Controls from group: 1	Data inhomogen	eous by Bartlett's test	(Modified t test)	
Group	Control	2	3	4	
Number/group	5	5	5	5	
Mean	0.521	0.541	0.535	0.640	
Standard deviation	0.022	0.009	0.015	0.071	
Group diff. at $p < 0.05$		0.030	0.034	0.092*	
Group diff. at $p < 0.01$		0.050	0.056	0.154	

Analysis of variance: F ratio = 10.22 Df = 3/16 F probability = 0.001

Note: a * indicates group mean is significantly different from control at level of significance shown.

[&]quot; = expressed as % organ to body weight ratio

TABLE 10.1 - Relative organ weights - Final sacrifice - Group mean data

STUDY NO.:

MALES

Organ: Epididymides	Controls from group: 1	Data homogeneo	us by Bartlett's test	(Dunnett's test)	
Group	Control	2	3	4	
Number/group	5	5	5	5	
Mean	0.3144	0.3318	0.3216	0.3890	
Standard deviation	0.0154	0.0235	0.0211	0.0538	
Group diff. at $p < 0.05$		0.0526	0.0526	0.0526*	
Group diff. at p < 0.01		0.0688	0.0688	0.0688*	

Analysis of variance: F ratio = 5.60 Df = 3/ 16 F probability = 0.008

Note: a * indicates group mean is significantly different from control at level of significance shown.

Organ: Heart	Controls from group: 1	Data homogeneo	us by Bartlett's test	(Dunnett's test)	
Group	Control	2	3	4	
Number/group	5	5	5	5	
Mean	0.356	0.350	0.362	0.331	
Standard deviation	0.028	0.022	0.018	0.022	
Group diff. at $p < 0.05$		0.037	0.037	0.037	
Group diff. at $p < 0.01$		0.049	0.049	0.049	

Analysis of variance: F ratio = 1.70 Df = 3/16 F probability = 0.206

Note: a * indicates group mean is significantly different from control at level of significance shown.

[&]quot; = expressed as % organ to body weight ratio

TABLE 10.1 - Relative organ weights° - Final sacrifice - Group mean data

STUDY NO.:

MALES

_____

Organ: Kidneys	Controls from group: 1	Data homogeneou	s by Bartlett's test	(Dunnett's test)	
Group	Control	2	3	4	
Number/group	5	5	5	5	
Mean	0.618	0.641	0.691	0.753	
Standard deviation	0.016	0.023	0.034	0.051	
Group diff. at p < 0.05		0.055	0.055*	0.055*	
Group diff. at p < 0.01		0.072	0.072*	0.072*	

Analysis of variance: F ratio = 15.81 Df = 3/16 F probability = 0.000

Note: a * indicates group mean is significantly different from control at level of significance shown.

Organ: Liver	Controls from group: 1	Data homogeneou	is by Bartlett's test (D	unnett's test)	
Group	Control	2	3	4	
Number/group	5	5	5	5	
Mean	2.665	3.130	4.182	6.138	
Standard deviation	0.132	0.109	0.194	0.141	
Group diff. at $p < 0.05$		0.242*	0.242*	0.242*	
Group diff. at $p < 0.01$		0.316*	0.316*	0.316*	

Analysis of variance: F ratio = 546.08 Df = 3/16 F probability = 0.000 Note: a * indicates group mean is significantly different from control at level of significance shown.

° = expressed as % organ to body weight ratio

TABLE 10.1 - Relative organ weights° - Final sacrifice - Group mean data

STUDY NO.:

MALES

Organ: Spleen	Controls from group: 1	Data homogened	ous by Bartlett's test	(Dunnett's test)	
Group	Control	2	3	4	
Number/group	5	5	5	5	
Mean	0.2559	0.2392	0.2367	0.1968	
Standard deviation	0.0214	0.0246	0.0258	0.0269	
Group diff. at p < 0.05		0.0406	0.0406	0.0406*	
Group diff. at p < 0.01		0.0531	0.0531	0.0531*	

Analysis of variance: F ratio = 5.12 Df = 3/16 F probability = 0.011Note: a * indicates group mean is significantly different from control at level of significance shown.

Controls from group: 1 Data homogeneous by Bartlett's test (Dunnett's test) Organ: Testes Group Control 2 3 4 Number/group 5 5 5 5 Mean 1.0790 1.1324 1.1047 1.3140 Standard deviation 0.0864 0.0382 0.0695 0.1273 Group diff. at p < 0.05 0.1419 0.1419 0.1419* Group diff. at p < 0.01 0.1856 0.1856 0.1856*

Analysis of variance: F ratio = 7.58 Df = 3/ 16 F probability = 0.002 Note: a * indicates group mean is significantly different from control at level of significance shown.

° = expressed as % organ to body weight ratio



#### 4-week oral toxicity study in rats followed by a 2 week recovery period

TABLE 10.1 - Relative organ weights° - Final sacrifice - Group mean data

STUDY NO.:

MALES

Organ: Thymus	Controls from group: 1	Data homogeneo	us by Bartlett's test	(Dunnett's test)	
Group	Control	2		4	
Number/group	5	5	5	5	
Mean	0.1515	0.1649	0.1599	0.1102	
Standard deviation	0.0193	0.0303	0.0156	0.0289	
Group diff. at p < 0.05		0.0399	0.0399	0.0399*	
Group diff. at p < 0.01		0.0522	0.0522	0.0522	

Analysis of variance: F ratio = 5.24 Df = 3/16 F probability = 0.010

Note: a * indicates group mean is significantly different from control at level of significance shown.

Organ: Thyrold	Controls from group: 1	Data inhomogen	eous by Bartlett's test	(Modified t test)	
Group	Control	2	3	4	
Number/group	5	5	5	5	
Mean	0.0072	0.0078	0.0079	0.0091	
Standard deviation	0.0009	0.0011	0.0002	0.0006	
Group diff. at p < 0.05		0.0018	0.0011	0.0013*	
Group diff. at p < 0.01		0.0030	0.0019	0.0022	

Analysis of variance: F ratio = 5.16 Df = 3/16 F probability = 0.011 Note: a * indicates group mean is significantly different from control at level of significance shown.  $^{\circ}$  = expressed as % organ to body weight ratio

TABLE 10.1 - Relative organ weights° - Final sacrifice - Group mean data

STUDY NO.:

FEMALES

Organ: Adrenals	Controls from group: 1	Data inhomogene	ous by Bartlett's test	(Modified t test)	
Group	Control	2	3	4	
Number/group	5	4	5	5	
Mean	0.0293	0.0267	0.0317	0.0280	
Standard deviation	0.0012	0.0009	0.0058	0.0039	
Group diff. at p < 0.05		0.0021*	0.0074	0.0051	
Group diff. at $p < 0.01$		0.0036	0.0124	0.0085	

Analysis of variance: F ratio = 1.54 Df = 3/15 F probability = 0.244

Note: a * indicates group mean is significantly different from control at level of significance shown.

Organ: Brain	Controls from group: 1	Data homogeneous	by Bartlett's test	(Dunnett's test)	
Group	Control	2	3	4	
Number/group	5	4	5	5	
Mean	0.755	0.744	0.791	0.826	
Standard deviation	0.053	0.044	0.051	0.013	
Group diff. at p < 0.05		0.076	0.071	0.071	
Group diff. at $p < 0.01$		0.099	0.094	0.094	

Analysis of variance: F ratio = 3.50 Df = 3/15 F probability = 0.042 Note: a * indicates group mean is significantly different from control at level of significance shown.

^{° =} expressed as % organ to body weight ratio

TABLE 10.1 - Relative organ weights - Final sacrifice - Group mean data

STUDY NO.:

FEMALES

Organ: Heart	Controls from group: 1	Data homogeneo	us by Bartlett's test (	Dunnett's test)	
Group	Control	2	3	4	7 486 966 860 860 466 666 566 566 466 467 561 460 560 466 466 466
Number/group	5	4	5	5	
Mean	0.388	0.376	0.394	0.386	
Standard deviation	0.037	0.037	0.033	0.038	
Group diff. at p < 0.05		0.063	0.060	0.060	
Group diff. at p < 0.01		0.083	0.078	0.078	

Analysis of variance: F ratio = 0.19 Df = 3/15 F probability = 0.899Note: a * indicates group mean is significantly different from control at level of significance shown.

Organ: Kidneys	Controls from group: 1	Data inhomogen	eous by Bartlett's test	(Modified t test)	
Group	Control	2	3	4	
Number/group	5	4	5	5	
Mean	0.638	0.622	0.673	0.723	
Standard deviation	0.040	0.040	0.009	0.062	
Group diff. at $p < 0.05$		0.081	0.051	0.092	
Group diff. at $p < 0.01$		0.143	0.086	0.153	

Analysis of variance: F ratio = 5.21 Df = 3/15 F probability = 0.012Note: a * indicates group mean is significantly different from control at level of significance shown.

" = expressed as % organ to body weight ratio

TABLE 10.1 - Relative organ weights - Final sacrifice - Group mean data

STUDY NO.:

FEMALES

Organ: Liver	Controls from group: 1	Data homogeneo	us by Bartlett's test (Dur	nnett's test)	
Group	Control	2	3	4	
Number/group	5	4	5	5	
Mean	2.646	2.686	3.065	4.360	
Standard deviation	0.097	0.088	0.143	0.275	
Group diff. at p < 0.05		0.301	0.284*	0.284*	
Group diff. at p < 0.01		0.396	0.373*	0.373*	

Analysis of variance: F ratio = 105.90 Df = 3/15 F probability = 0.000

Note: a * indicates group mean is significantly different from control at level of significance shown.

Organ: Ovaries	Controls from group: 1	Data homogeneous by Bartlett's test (Dunnett's test)			
Group	Control	2	3	4	
Number/group	5	4	5	5	
Mean	0.0574	0.0515	0.0560	0.0596	
Standard deviation	0.0049	0.0072	0.0091	0.0062	
Group diff. at p < 0.05		0.0123	0.0116	0.0116	
Group diff. at p < 0.01		0.0161	0.0152	0.0152	

Analysis of variance: F ratio = 1.05 Df = 3/15 F probability = 0.401 Note: a * indicates group mean is significantly different from control at level of significance shown.

° = expressed as % organ to body weight ratio



#### 4-week oral toxicity study in rats followed by a 2 week recovery period

TABLE 10.1 - Relative organ weights - Final sacrifice - Group mean data

STUDY NO.:

FEMALES

Organ: Spleen	Controls from group: 1	Data homogeneou	Data homogeneous by Bartlett's test (Dunnett's test)		
Group	Control	 2	3	4	7 TO TO BUT PAR MA GO US OF THE THE US
Number/group	5	4	5	5	
Mean	0.3158	0.2729	0.2523	0.2278	
Standard deviation	0.0431	0.0467	0.0259	0.0178	
Group diff. at p < 0.05		0.0605	0.0571*	0.0571*	
Group diff. at p < 0.01		0.0795	0.0749	0.0749*	

Analysis of variance: F ratio = 5.80 Df = 3/ 15 F probability = 0.008

Note: a * indicates group mean is significantly different from control at level of significance shown.

Organ: Thymus	Controls from group: 1	Data homogenec	ous by Bartlett's test	(Dunnett's test)	
Group	Control	2	3	4	
Number/group	5	4	5	5	
Mean	0.1690	0.1776	0.1923	0.1641	
Standard deviation	0.0166	0.0354	0.0357	0.0160	
Group diff. at $p < 0.05$		0.0474	0.0447	0.0447	
Group diff. at p < 0.01		0.0622	0.0587	0.0587	

Analysis of variance: F ratio = 1.04 Df = 3/15 F probability = 0.403

Note: a * indicates group mean is significantly different from control at level of significance shown.

[&]quot; = expressed as % organ to body weight ratio

TABLE 10.1 - Relative organ weights - Final sacrifice - Group mean data

STUDY NO.:

FEMALES

Organ: Thyroid	Controls from group: 1	Data homogeneo	ous by Bartlett's test	(Dunnett's test)	
Group	Control	2	3	4	
Number/group	5	4	5	5	
Mean	0.0066	0.0072	0.0070	0.0076	
Standard deviation	0.0013	0.0008	0.0010	0.0008	
Group diff. at $p < 0.05$		0.0018	0.0017	0.0017	
Group diff. at p < 0.01		0.0024	0.0022	0.0022	

Analysis of variance: F ratio = 0.78 Df = 3/15 F probability = 0.525

Note: a * indicates group mean is significantly different from control at level of significance shown.

^{° =} expressed as % organ to body weight ratio

TABLE 10.2 - Relative organ weights° - Recovery sacrifice - Group mean data

STUDY NO.:

Group diff. at p < 0.01

A 11 (20 J. 200)

MALES

Controls from group: 1 Data homogeneous by Bartlett's test (Dunnett's test) Control Number/group 5 0.0135 Mean 0.0166 Standard deviation 0.0022 0.0031 Group diff. at p < 0.050.0039 Group diff. at p < 0.010.0057

Analysis of variance: F ratio = 3.39 Df = 1/8 F probability = 0.101 Note: a * indicates group mean is significantly different from control at level of significance shown.

Controls from group: 1 Data homogeneous by Bartlett's test (Dunnett's test) Group Control Number/group 5 5 0.487 0.613 Mean Standard deviation 0.027 0.068 Group diff. at p < 0.050.076*

0.111*

Analysis of variance: F ratio = 14.68 Df = 1/8 F probability = 0.005Note: a * indicates group mean is significantly different from control at level of significance shown. " = expressed as % organ to body weight ratio

TABLE 10.2 - Relative organ weights° - Recovery sacrifice - Group mean data

STUDY NO.:

MALES

______

Organ: Epididymides	Controls from group: 1 Data	homogeneous by Bartlett's test (Dunnett's test)
Group	Control	4
Number/group	5	5
Mean	0.3287	0.3584
Standard deviation	0.0245	0_0527
Group diff. at p < 0.05		0.0601
Group diff. at p < 0.01		0.0874

Analysis of variance: F ratio = 1.31 Df = 1/8 F probability = 0.286 Note: a * indicates group mean is significantly different from control at level of significance shown.

Organ: Heart	Controls from group: 1 Data homogen	eous by Bartlett's test (Dunnett's test)
Group	Control	4
Number/group	5	5
Mean	0.334	0.326
Standard deviation	0.013	0.015
Group diff. at $p < 0.05$		0.021
Group diff. at $p < 0.01$		0.030

Analysis of variance: F ratio = 0.73 Df = 1/8 F probability = 0.421 Note: a * indicates group mean is significantly different from control at level of significance shown.  $^{\circ}$  = expressed as % organ to body weight ratio

#### 4-week oral toxicity study in rats followed by a 2 week recovery period

TABLE 10.2 - Relative organ weights - Recovery sacrifice - Group mean data

STUDY NO.:

MALES

Organ: Kidneys	Controls from group: 1 Data homogeneous	s by Bartlett's test (Dunnett's test)
Group	Control	4
Number/group	5	5
Mean	0.590	0.762
Standard deviation	0.023	0.047
Group diff. at p < 0.05		0.054*
Group diff. at $p < 0.01$		0.078*

Analysis of variance: F ratio = 55.33 Df = 1/8 F probability = 0.000

Note: a * indicates group mean is significantly different from control at level of significance shown.

Organ: Liver	Controls from group: 1 Data homogeneous	s by Bartlett's test (Dunnett's test)	
Group	Control	4	
Number/group	5	5	
Mean	2.515	6.348	
Standard deviation	0.148	0.248	
Group diff. at $p < 0.05$		0.299*	
Group diff. at $p < 0.01$		0.435*	

Analysis of variance: F ratio = 878.42 Df = 1/8 F probability = 0.000

Note: a * indicates group mean is significantly different from control at level of significance shown.

^{* =} expressed as % organ to body weight ratio

4-week oral toxicity study in rats followed by a 2 week recovery period

TABLE 10.2 - Relative organ weights - Recovery sacrifice - Group mean data

STUDY NO.:

Group diff. at p < 0.01

MALES

Organ: Spleen Controls from group: 1 Data homogeneous by Bartlett's test (Dunnett's test) Group Control Number/group 5 0.2363 0.2148 Mean Standard deviation 0.0119 0.0228 Group diff. at p < 0.050.0266 Group diff. at p < 0.010.0387

Analysis of variance: F ratio = 3.50 Df = 1/8 F probability = 0.096 Note: a * indicates group mean is significantly different from control at level of significance shown.

 Organ: Testes
 Controls from group:
 1
 Data homogeneous by Bartlett's test (Dunnett's test)

 Group
 5
 5

 Mumber/group
 5
 5

 Mean
 1.0199
 1.2583

 Standard deviation
 0.0815
 0.1112

 Group diff, at p < 0.05</td>
 0.1426*

0.2075*

Analysis of variance: F ratio = 14.95 Df = 1/8 F probability = 0.005 Note: a * indicates group mean is significantly different from control at level of significance shown.  $^{\circ}$  = expressed as % organ to body weight ratio

TABLE 10.2 - Relative organ weights° - Recovery sacrifice - Group mean data

STUDY NO.:

MALES

Organ: Thymus	Controls from group: 1 Data homoger	neous by Bartlett's test (Dunnett's test)
Group	Control	4
Number/group	5	5
Mean	0.1308	0.1119
Standard deviation	0.0178	0.0465
Group diff. at p < 0.05		0.0515
Group diff. at p < 0.01		0.0749

Analysis of variance: F ratio = 0.72 Df = 1/8 F probability = 0.425 Note: a * indicates group mean is significantly different from control at level of significance shown.

Organ: Thyroid	Controls from group: 1 Data inhomogene	eous by Bartlett's test (Modified t test)	
Group	Control	4	
Number/group	5	5	
Mean	0.0054	0.0081	
Standard deviation	0.0008	0.0024	
Group diff. at $p < 0.05$		0.0031	
Group diff. at p < 0.01		0.0052	

Analysis of variance: F ratio = 5.76 Df = 1/8 F probability = 0.042 Note: a * indicates group mean is significantly different from control at level of significance shown.  $^{\circ}$  = expressed as % organ to body weight ratio

TABLE 10.2 - Relative organ weights° - Recovery sacrifice - Group mean data

STUDY NO.:

FEMALES

Organ: Adrenals	Controls from group: 1 Data homogeneous	s by Bartlett's test (Dunnett's test)	
Group	Control	4	
Number/group	5	5	
Mean	0.0248	0.0254	
Standard deviation	0.0041	0.0019	
Group diff. at p < 0.05		0.0046	
Group diff. at $p < 0.01$		0.0067	

Analysis of variance: F ratio = 0.10 Df = 1/8 F probability = 0.752 Note: a * indicates group mean is significantly different from control at level of significance shown.

Organ: Brain Controls from group: 1 Data homogeneous by Bartlett's test (Dunnett's test)	
Group Control 4	
Number/group 5	
Mean 0.746 0.812	
Standard deviation 0.041 0.049	
Group diff. at p $< 0.05$	
Group diff. at $p < 0.01$ 0.097	

Analysis of variance: F ratio = 5.15 Df = 1/8 F probability = 0.051 Note: a * indicates group mean is significantly different from control at level of significance shown.  $^{\circ}$  = expressed as % organ to body weight ratio

Page 129

TABLE 10.2 - Relative organ weights° - Recovery sacrifice - Group mean data

STUDY NO.:

FEMALES

 Organ: Heart
 Controls from group:
 1
 Data homogeneous by Bartlett's test (Dunnett's test)

 Group
 Control
 4

 Number/group
 5
 5

 Mean
 0.363
 0.363

 Standard deviation
 0.020
 0.015

 Group diff. at p < 0.05</td>
 0.025

 Group diff. at p < 0.01</td>
 0.037

Analysis of variance: F ratio = 0.00 Df = 1/8 F probability = 0.909 Note: a * indicates group mean is significantly different from control at level of significance shown.

Organ: Kidneys Controls from group: 1 Data homogeneous by Bartlett's test (Dunnett's test) Group Control Number/group 5 5 0.611 Mean 0.691 Standard deviation 0.024 0.046 Group diff. at p < 0.05 0.054* Group diff. at p < 0.010.079*

Analysis of variance: F ratio = 11.66 Df = 1/8 F probability = 0.009 Note: a * indicates group mean is significantly different from control at level of significance shown.  $^{\circ}$  = expressed as % organ to body weight ratio

TABLE 10.2 - Relative organ weights° - Recovery sacrifice - Group mean data

STUDY NO.:

FEMALES

 Group
 Control
 4

 Number/group
 5
 5

 Mean
 2.433
 4.163

 Standard deviation
 0.065
 0.250

 Group diff. at p < 0.05</td>
 0.321*

 Group diff. at p < 0.01</td>
 0.535*

Analysis of variance: F ratio = 223.95 Df = 1/8 F probability = 0.000

Note: a * indicates group mean is significantly different from control at level of significance shown.

Controls from group: 1 Data homogeneous by Bartlett's test (Dunnett's test) Organ: Ovaries Group Control 4 Number/group 5 5 0.0523 0.0516 Mean Standard deviation 0.0032 0.0073 Group diff. at p < 0.050.0082

0.0120

Analysis of variance: F ratio = 0.04 Df = 1/8 F probability = 0.832 Note: a * indicates group mean is significantly different from control at level of significance shown.

° = expressed as % organ to body weight ratio

Group diff. at p < 0.01

TABLE 10.2 - Relative organ weights* - Recovery sacrifice - Group mean data

STUDY NO.:

FEMALES

Organ: Spleen	Controls from group: 1 Data homogeneous	by Bartlett's test (Dunnett's test)	
Group	Control	4	
Number/group	5	5	
Mean	0.2730	0.2608	
Standard deviation	0.0280	0.0153	
Group diff. at p < 0.05		0.0330	
Group diff. at $p < 0.01$		0.0480	

Analysis of variance: F ratio = 0.74 Df = 1/8 F probability = 0.419 Note: a * indicates group mean is significantly different from control at level of significance shown.

Organ: Thymus Controls from group: 1 Data homogeneous by Bartlett's test (Dunnett's test)

Group	Control	4
Number/group	5	5
Mean	0.1741	0.1665
Standard deviation	0.0504	0.0163
Group diff. at p < 0.05		0.0548
Group diff. at p < 0.01		0.0798

Analysis of variance: F ratio = 0.10 Df = 1/8 F probability = 0.751 Note: a * indicates group mean is significantly different from control at level of significance shown.  $^{\circ}$  = expressed as % organ to body weight ratio

TABLE 10.2 - Relative organ weights° - Recovery sacrifice - Group mean data

STUDY NO.:

FEMALES

_____

Organ: Thyrold	Controls from group: 1 Data homogeneou	us by Bartlett's test (Dunnett's test)
Group	Control	4
Number/group	5	5
Mean	0.0081	0.0097
Standard deviation	0.0022	0.0025
Group diff. at $p < 0.05$		0.0035
Group diff. at $p < 0.01$		0.0051

Analysis of variance: F ratio = 1.07 Df = 1/8 F probability = 0.333 Note: a * indicates group mean is significantly different from control at level of significance shown.  $^{\circ}$  = expressed as  $^{\circ}$  organ to body weight ratio

TABLE 11.1 - Macroscopic observations - Unscheduled deaths - Group incidence

		Females	
	Group:	2	
	Number in group:	1	
Liver			 
Abnormal a	area(s)	1	
T			
Lungs		2	
ADDORMAL C	colour	Ţ	
Thymus			
	area(s)	1	
Abnormal d	colour	1	
Uterus			
	size	1	
Abnormal o	contents	1	
Abdominal cav	rå + 32		
	contents	1	

4-week oral toxicity study in rats followed by a 2 week recovery period

TABLE 11.2 - Macroscopic observations - Final sacrifice - Group incidence

			 s				Female	 25	
Group:	1	2	3	4	i	1	2	3	4
Number in group:	5	5	5	5	1	5	4	5	5
Adrenals	~ ~ ~ ~ ~				[				
Abnormal size	0	0	0	1	ĺ	0	0	0	0
Ileum					ı				
Abnormal contents	0	0	0	0	Ì	1	0	0	0
Jejunum					1				
Abnormal contents	1	0	0	0	İ	0	0	0	0
Kidneys					1				
Abnormal area(s)	0	0	1	0	j	0	0	0	0
Abnormal colour	0	0	0	0	- 1	1	0	0	0
Liver					ŧ				
Abnormal area(s)	1	0	1	2	I	0	0	0	0
Abnormal colour	0	0	1	3	1	0	0	0	1
Abnormal shape	0	0	0	2	1	0	0	0	0
Abnormal size	0	0	0	1	ı	2	0	0	0
Lungs					1				
Abnormal area(s)	1	0	0	0	1	0	0	1	0
Abnormal colour	0	0	0	1	1	0	0	0	0
Ovaries					1				
Abnormal size					1	1	0	1	0
Seminal vesicles					1				
Abnormal colour	0	0	0	2					
Spleen					1				
Abnormal shape	0	0	1	0		1	0	1	0

TABLE 11.2 - Macroscopic observations - Final sacrifice - Group incidence

STUDY No.:

		- Male:	5		1		Female	es	
Group:	1	2	3	4	1	1	2	3	4
Number in group:	5	5	5	5	1	5	4	5	5
Stomach					1				
Abnormal area(s)	0	0	1 0	0 1	1	0	0	0	0
Abnormal size	0	0	0	1	1	0	0	0	0
Thymus					1				
Abnormal area(s)	0	1	1	0		0	0 0 0	1	0
Abnormal colour	٥	0	1 0 0	0		1	0	1	0
Abnormal size	0	0	0	2	1	0	0	0	0
Uterus					1				
Abnormal size					į	0	0	1	0
Abnormal contents					1	0	0	1	0
Head					ı				
Staining	0	0	0	0	Ì	0	0	1	0
Skin					1				
Staining	0	0	0	0	i	0	0	1	1
Tail					1				
Abnormal area(s)	0	1	0	0	i	0	0	0	0
Whole animal					1				
No abnormalities detected	3	3	1	0	i	1	4	1	3

TABLE 11.3 - Macroscopic observations - Recovery sacrifice - Group incidence

	Males			Fema.	les
Group:	1	4 5	- 1	1	4
Number in group:	5	5	<u> </u>	5	5
Cervical nodes			 		
Abnormal size	1	1	İ	0	0
Ileum			1		
Abnormal contents	1	0	1	1	0
Jejunum			1		
Abnormal contents	1	0	1	2	1
Kidneys			1		
Abnormal area(s)	0	2	1	0	0
Pelvic dilatation	0	2	l	0	0
Liver			1		
Abnormal area(s)	0	0	1	0	1
Abnormal colour	0	0 1 2	1	1	0
Abnormal shape	0	1	1	0	0
Abnormal size	3	2	1	3	0
Mesenteric nodes			1		
Abnormal colour	0	1	1	0	0

TABLE 11.3 - Macroscopic observations - Recovery sacrifice - Group incidence

	Males	5	1	Fema.	les
Group:	1	4	į	1	4
Number in group:	5	5	1	5	5
Seminal vesicles					
Abnormal colour	0	2	- 1		
Spleen			1		
Abnormal shape	1	0	i	0	0
Stomach					
Abnormal contents	0	1	i	1	2
			·		_
Thymus Abnormal area(s)	٥	0	- [	0	2
Abnormal size	0	0 2		0	2 1
	•	_	,	·	-
Uterus			1	_	_
Abnormal size			- }	0	1
				Ŭ	-
Head			Ţ	_	
Abnormal area(s)	0	1	- 1	0	0
ocaming	U	1	ı	U	۷
Skin			- 1		
Staining	0	0	i	2	0
Whole animal			1		
No abnormalities detected	2	1	i	1	0

TABLE 12.1 - Microscopic observations - Main phase - Group incidence

	~ <del>~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ </del>			 A n i	 mals		Affec	t. e. d		
Controls from group(s): 1	Animal sex:		Mal	e s						s
	Dosage group:	Ctls	2	3	4	j	Ctls	2	3	4
Tissues With Diagnoses	Dosage group: No. in group:	5	5	5	5	1	5	5*	5	5
Cervical nodesN		5	0	0	5		5	1*	0	5
REACTIVE HYPERPLASIA		0	0	0	2	ı	0	0	0	0
HeartNu	umber examined:	5		0	5		5	1*	0	5
CHRONIC INFLAMMATION		1	0	0	0	I	1	0	0	0
KidneysNu	umber examined:	5		1	5	ŀ	5	1*	0	5
NEPHROPATHY		4	-	1	~	i	1	0	0	1
INFLAMMATORY CELL INFILTRATION		1	0	0	0	i	1	0	0	0
LiverN	umber examined:	5		5	5	l	5		5	5
INFLAMMATORY CELL FOCI		5	5	5		1	5	5*	5	5
BILE DUCT PROLIFERATION		5	5	5		1	5	4	5	5
HEPATOCYTIC HYPERTROPHY		0	4	5	5	1	0	0	Ó	5
HEPATOCYTIC NECROSIS		٥	0	1	2	i	ā	ā	á	ñ
CHRONIC INFLAMMATION		ñ	0	0	1	i	ñ	ō	ō	ñ
HAEMORRHAGE		Ō	0	ō	ō	İ	ō	1*	Ö	Ö
LungsNu	umber examined:	5	5	5	5	ı	5	5*	5	5
INFLAMMATORY CELL FOCI		4	1	3	4	i	4	3*	4	4
AGGREGATIONS OF ALVEOLAR MACROPHAGES		n	0	ō	Δ	i	ō	o o	Ó	2
PERIBRONCHIAL LYMPHOID HYPERPLASIA		ž	Ö	Ö	•	i	0	a	o	0
VASCULAR MINERALIZATION		0	-	1	•	- 1	1		a	0
ALVEOLAR HAEMORRHAGE		. 2	0			- !	0	1		•
		. 2	•			!	_	_	_	2
FRAGMENT/S OF BONE		0	0	1	0	ı	0	1*	0	0
OvariesN	umber examined:					ı	5	1*	1	5
LUTEIN CYST						I	1	0	0	1
Pituitary	umber examined:		0	0		1	5	1*	0	5
DEVELPMENTAL CYST(S)		0	0	0	1	I	1	0	0	0
ProstateN	umber examined:	5	0	0	5	1				
MIXED INFLAMMATORY CELL INFILTRATION		2	0	0	5	I				
Seminal vesicles	umber examined:	5	0	0	5	ı				
COLLOID DEPLETION		0	0	0	3	1				

 $[\]star$  Includes one animal which was found dead on day 23 of the study.

TABLE 12.1 - Microscopic observations - Main phase - Group incidence

ontrols from group(s): 1	Animal sex:	, mr. va.					Affected I Females				
	Dosage group:				3 4		Ctls			-	
issues With Diagnoses	No. in group:	5	5	5	5	I	5	5*		5	
tomach	Number examined:		0	1	5		5	1*	0	5	
GLANDULAR DILATATION		0	0	0	Ō	1	0	0	0	0	
INFLAMMATORY CELL INFILTRATION		0	0	0	0	1	1	0	0	0	
ymus	Number examined:	5	5	5	5 3	ı	5	5*	5	5	
ATROPHY		0	0	0	3	- 1	0	5* 0	5 0	1	
CONGESTION/HAEMORRHAGE		0	0	0	0	I	0	1*	0	0	
yroid	Number examined:	5	0	0	5	1	5	1*	0	5	
THYRO-GLOSSAL DUCT REMNANT		1	0	0	0	i	5 0	1* 0	0	1	
inary bladder	Number examined:	5	0	0	5	1	5	1*	0	5	
PROTEINACEOUS PLUG		0	0	0	2	i	0	1* 0	0	0	
terus	Number examined:					1	5	1*	1	5	
GLANDULAR DILATATION						i	1	Ō	1	2	
HYDROMETRA						İ	Ō	1*	1	2	
ail	Number examined:	0	1	0	0	I	0	0	0	0	
SCAB/S		0	1	0	0	İ	0	0	0	0	
CHRONIC INFLAMMATION		٥	1	0	0	i	٥	0	0	0	

^{*} Includes one animal which was found dead on day 23 of the study.

TABLE 12.2 - Microscopic observations - Recovery phase - Group incidence

					Affected				
Controls from group(s): 1	Animal sex:	Mal	e s	1	Females				
		Ctls	4	ŀ	Ctls	4			
lissues With Diagnoses	No. in group:	5	5	ŀ	5	5			
iver	Number examined:	5	 5	i	5	5			
INFLAMMATORY CELL FOCI		5	5	1	5	5			
BILE DUCT PROLIFERATION		5	5	1	5	5			
HEPATOCYTIC HYPERTROPHY		0	5	1	0	5			
HEPATOCYTIC NECROSIS		0	1	İ	0	. 0			
CHRONIC INFLAMMATION		0	0	i	0	0			
HAEMORRHAGE		0	0	i	0	0			
ungs	Number examined:	5	5	1	5	5			
INFLAMMATORY CELL FOCI		2	3	i	2	3			
AGGREGATIONS OF ALVEOLAR MACROPHAGES		0	1	i	0	1			
PERIBRONCHIAL LYMPHOID HYPERPLASIA		0	0	i	0	0			
VASCULAR MINERALIZATION		3	3	i	1	2			
ALVEOLAR HAEMORRHAGE		0	1	i	0	1			
FRAGMENT/S OF BONE		1	ō	i	ō	0			
hymus	Number examined:	5	5	1	5	5			
ATROPHY		0	1	i	n	ñ			
CONGESTION/HAEMORRHAGE		0	<u>-</u>		0	Ô			



FINAL REPORT

VOLUME II OF II





Total number of pages Volume II: 246







# Contents - Volume II

Page

# Appendices

APPENDIX 1 - Mortality - Individual data	2
APPENDIX 2.1 - Neurotoxicity assessment - Sensory reaction to stimuli - At the end of treat	
- Individual data	
APPENDIX 2.2 - Neurotoxicity assessment - Sensory reaction to stimuli - At the end of reco	
- Individual data	
APPENDIX 3.1 - Motor activity - At the end of treatment - Individual data	
APPENDIX 3.2 - Motor activity - At the end of recovery - Individual data	
APPENDIX 4.1 - Body weight (g) - During treatment - Individual data	
APPENDIX 4.2 - Body weight (g) - During recovery - Individual data	
APPENDIX 5.1 - Body weight change (g) - During treatment - Individual data	22
APPENDIX 5.2 - Body weight change (g) - During recovery - Individual data	2 <i>€</i>
APPENDIX 6.1 - Food consumption (g/animal/day) - During treatment - Cage data	
APPENDIX 6.2 - Food consumption (g/animal/day) - During recovery - Cage data	
APPENDIX 7.1 - Haematology - At the end of treatment - Individual data	32
APPENDIX 7.2 - Haematology - At the end of recovery - Individual data	
APPENDIX 8.1 - Clinical chemistry - At the end of treatment - Individual data	44
APPENDIX 8.2 - Clinical chemistry - At the end of recovery - Individual data	
APPENDIX 9.1 - Urinalysis - At the end of treatment - Individual data	
APPENDIX 9.2 - Urinalysis - At the end of recovery - Individual data	
APPENDIX 10.1 - Absolute organ weights (g) - Final sacrifice - Individual data	
APPENDIX 10.2 - Absolute organ weights (g) - Recovery sacrifice - Individual data	
APPENDIX 11.1 - Relative organ weights - Final sacrifice - Individual data	80
APPENDIX 11.2 - Relative organ weights - Recovery sacrifice - Individual data	84
APPENDIX 12 - Macroscopic and microscopic observations - Individual data	88
•	
Addenda	
ADDENDUM I - Computer abbreviations and symbols	150
ADDENDUM II - Abbreviations of neurotoxicity tests	
ADDENDUM III - Analytical method and validation report for formulation analysis and form	nulation
analysis results	154
ADDENDUM IV -Analytical method and validation report for toxicokinetic analysis and	
toxicokinetic analysis results	169
ADDENDUM V - Certificate of analysis	213
ADDENDUM VI - Study protocol	215
ADDENDUM VII - Clinical pathology report	
ADDENDUM VIII - Historical control data	234

APPENDIX 1 - Mortality - Individual data

STUDY NO.:

Animal Number	Group	Sex	Study Phase	Description of death	Date of Death	Day of Death	Terminal body Weight (g)	
36710027	2	F	Dosing phase	Found dead	22.Apr.05	23	211.0	

APPENDIX 2.1 - Neurotoxicity assessment - Sensory reaction to stimuli - At the end of treatment - Individual data

STUDY NO.:

Animal Number	Group	APPR	TOUC	CLIK	TAIL	PUPI	RIGH	
36710002	1	1	1	2	2	+	1	
36710004		1	1	2	2	+	1	
36710006		1	1	2	2	+	1	
36710008		1	1	2	2	+	1	
36710010		1	1	2	2	+	1	
6710012		1	1	2	2	+	1	
6710014		1	1	2	2	+	1	
6710016		1	1	2	2	+	1	
6710018		1	1	2	2	+	1	
86710020		1	1	2	2	+	1	
6710022	2	2	1	2		+		
6710022	4	2	1	2	2 2	+	1	
6710024		1	1	2	1	+	7	
6710028		1	1	2	2	+	1	
6710030		7	1	2	1	+	1	
								· 
6710032	3	1	1	2	2	+	1	
6710034		1	1	2	1	-	1	
6710036		1	1	2	2	+	1	
6710038		1	1	2	2	+	1	
6710040		1	1	2	2	+	1	
6710042	4	1	 1	2	2	+	1	
6710044	•	1	1	2	2	+	1	
6710046		1	1	2	2	+	1	
6710048		j	1	2	2	+	1	
6710050		1	1	2	2		1	
6710052		1	1	2	2	+	1	
6710054		1	1	2	2	+	1	
6710054		i i	1	2	2	+	1	
6710058		2	1	2	2	+	1	
6710050		1	1	2	2	+	1	
.0,10000		*	_	2	2	7	_	

APPENDIX 2.1 - Neurotoxicity assessment - Sensory reaction to stimuli - At the end of treatment - Individual data

STUDY NO.:

Animal	Group		GRI1	GRI2	GRIM	BW	LANI	LAN2	LANM	
Number			S		S	-	cm	cm	cm	
 36710002	1		42	12	27.0	352.0	9.5	6.0	7.75	
36710004	-		19	6	12.5	370.0	8.3	7.1	7.70	
36710006			36	10	23.0	351.1	8.1	6.3	7.20	
36710008			30	8	19.0	341.0	7.5	7.2	7.35	
36710010			25	12	18.5	355.4	6.8	7.3	7.05	
36710010			35	20	27.5	350.0	8.3	7.3	7.85	
			40	16	28.0	333.1	7.2	6.4	6.80	
36710014			38	10		348.2	6.5	-		
36710016			20	20 18 17	29.0 19.0	346.2	6.3	8.4 7.4	7.45 6.85	
36710018			20	18						
36710020					19.5	350.9	6.8		6.95	
		Mean	30.7	13.9	22.30	347.67	7.53	7.06	7.295	
		\$D	8.7		5.45	12.36	1.01	0.69	0.385	
36710022	2		10	3	6.5	357.5	5.0	4.6	4.80	
36710024			29	12	20.5	331.1	8.5	7.3	7.90	
36710026			26	11	18.5	335.9	10.0	8.5	9.25	
36710028			10	29	19.5	353.0	7.0	4.0	5.50	
36710030			11	3	7.0	363.5	5.5	5.5	5.50	
5312555		Mean	17.2	11.6	14.40	348.20	7.20	5.98	6.590	
		SD	9.5	10.6	7.02	14.03	2.08	1.88	1.896	
36710032	3		15	3		358.4	7.0	7,2	7.10	
	3		15 24		9.0		7.0 5.8			
36710034			7	4 6		366.7		5.2	5.50	
36710036			17		6.5	369.7	5.0	5.0	5.00	
36710038			1/	3	10.0	348.7	6.5		5.90	
36710040		***	13	3 3.8	8.0	350.8	5.3		5.55	
		Mean	15.2	3.8	9.50	358.86	5.92	5.70	5.810	
		SD		1.3	2.83		0.83	0.89	0.789	
36710042	4		43	6	24.5	290.4	6.5	5.0	5.75	
36710044			9	7	8.0	335.1	5.8	5.3	5.55	
36710046			9	2	5.5	318.0	6.5	4.2	5.35	
36710048			9	3	6.0	359.3	4.5	4.5	4.50	
36710050			9	4		301.9	4.0	4.0	4.00	
36710052			20	3		328.7	6.2	4.6	5.40	
36710054			1	2	1.5	329.7	8.5	5.8	7.15	
36710054			9	3	6.0	315.8	5.0	5.2	5.10	
36710058			19	6	12.5	303.5	8.0	8.5	8.25	
36710050			7	6	6.5	320.0	10.0	9.5	9.75	
55715000		Mean	13.5	4.2	8.85	320.24	6.50	5.66	6.080	
		SD	11.7	1.9	6.31	19.55	1.87	1.85	1.779	
		שט	11.1				1.8/			

APPENDIX 2.1 - Neurotoxicity assessment - Sensory reaction to stimuli - At the end of treatment - Individual data

STUDY NO.:

Animal Number	Group	APPR	TOUC	CLIK	TAIL	PUPI	RIGH	
6710001	1	1	1	2	2	+	1	
6710003		1	1	2	2	+	1	
6710005		1	1	2	2	+	1	
86710007		1	1	2	2	+	1	
6710009		1	1	2	2	+	1	
6710011		1	1	2	2	+	1	
6710013		1	1	2	2	+	1	
6710015		2	1	2	2	+	1	
6710017		2	1	2	2	+	1	
6710019		1	1	2	2	+	1	
6710021	2	1	1	2	2	+	1	
6710023		1	1	2	2	+	1	
6710025		2	1	2	2	+	1	
86710027		1	1	2	2	+	1	
36710029		2	1	2	2	+	1	
6710031	3	2	1	2	2	+	1	
6710033		2	1	2	2	+	1	
6710035		1	1	2	2	+	1	
6710037		1	1	2	2	+	1	
6710039		2	1	2	2	+	1	
6710041	4	1	1	2	2	+	1	
6710043		1	1	2	2	+	1	
6710045		2	1	2	2	+	1	
6710047		1	1	2	2	+	1	
6710049		2	1	2	2	+	1	
6710051		1	1	2	2	+	1	
6710053		1	1	2	2	+	1	
6710055		2	1	2	2	+	1	
6710057		2	1	2	2	+	1	
6710059		1	- 1	2	2	i	1	

# 4-week oral toxicity study in rats followed by a 2 week recovery period

APPENDIX 2.1 - Neurotoxicity assessment - Sensory reaction to stimuli - At the end of treatment - Individual data

STUDY NO.:

Animal Number	Group		GRI1	GRI2	GRIM s	BW g	LAN1 cm	LAN2 cm	LANM	
				~~~~~~						
36710001	1.		40 47	4	22.0	250.3	4.0	4.3	4.15	
36710003			47	2	24.5		7.5	6.5	7.00	
36710005 36710007			45 9	11 5	28.0 7.0	233.5	8.5 5.5	8.3 6.0	8.40	
36710007			9 47	22	7.0 34.5	212.5 218.9	8.5	6.0 6.2	5.75 7.35	
36710009			28	4	34.5 16.0	216.9	7.0	6.0	6.50	
36710011			35	8	21.5	230.0	6.9	6.3	6.60	
36710015			50	7	28.5	220.1	3.0	4.0	3.50	
36710017					29.0	218.9	4.3	4.0	4.15	
36710019			46	10 12	29.0	229.6	5.3	3.1	4.20	
00,10013		Mean	39.5	8.5	24.00	227.10		5.47	5.760	
		SD	12.7	5.8	7.89	12.39	1.92	1.57	1.667	
36710021	2		18	16	17.0	221.3	6.2	5.4	5.80	
36710023			20	20	29.5	245.9	5.3 6.0	4.8	5.05	
36710025			13	20 22	17.5	226.5	6.0	5.5	5.75	
36710027			25	18 19	21.5	212.5	5.9	4.8	5.35	
36710029					26.0	237.0	6.8		6.35	
		Mean		19.0	22.30			5.28	5.660	
		SD	10.6	2.2	5.42	13.10		0.48	0.493	
36710031	3		35	8	21.5	242.6	6.8	5.7	6.25	
36710033			21	16	23.5		6.8	6.2	6.50	
36710035			17	13		224.6			4.15	
36710037			8	4 5	6.0	210.8	3.9		4.45	
36710039							3.8		4.75	
		Mean			17.60	221.26		5.42	5.220	
		SD	13.0		7.26	13.05	1.63	0.67	1.079	
36710041	4		22	17	19.5	199.5	4.5	3.2	3.85	
36710043			11		9.5	208.5	4.0	5.5	4.75	
36710045			4	3	3.5	220.7	6.1	3.0	4.55	
36710047			40	11	25.5	230.7	7.0	6.3	6.65	
36710049			33	8	20.5	213.0	4.1	3.8	3.95	
36710051			15	30	22.5	218.7	6.5	5.5	6.00	
36710053			13	34	23.5	194.4	6.1	7.4	6.75	
36710055			19	45	32.0	209.6	7.0	6.8	6.90	
36710057			11 6	19	15.0	213.8	2.5	3.6	3.05	
36710059		Mann		10.0	5.5 17.70	206.2	4.5	3.9	4.20	
		Mean SD	17.4 11.5	18.0 14.0	9.18	211.51 10.49	5.23 1.52	4.90 1.60	5.065	
			11.0	14.0	3.10	10.49	1.52	1.00	1.394	

APPENDIX 2.2 - Neurotoxicity assessment - Sensory reaction to stimuli - At the end of recovery - Individual data

STUDY NO.:

Animal Number	Group	APPR	TOUC	CLIK	TAIL	PUPI	RIGH
36710012	1	1	1	2	1	+	1
36710014		1	1	2	1	+	1
36710016		<u> </u>	1	2	1	+	1
36710018		1	Ţ	2	1	+	1
36710020		7	1	2	1	+	1
36710052	4	1	1	1	1	+	1
36710054		1	1	2	ī	+	ī
36710056		1	1	2	1	+	1
36710058		1	1	2	1	+	1
36710060		1	1	2	2	+	1

APPENDIX 2.2 - Neurotoxicity assessment - Sensory reaction to stimuli - At the end of recovery - Individual data

STUDY NO.:

Animal Number	Group		GRI1 s	GRI2 s	GRIM s	BW g	LAN1 cm	LAN2 cm	LANM cm
86710012	1		3	4	3.5	395.4	4.0	5.8	4.90
36710014			3	8	5.5	368.2	8.0	9.2	8.60
36710016			24	3	13.5	392.0	7.9	5.7	6.80
36710018			5	5	5.0	362.4	5.5	7.0	6.25
36710020			4	4	4.0	392.9	7.5	7.4	7.45
		Mean	7.8	4.8	6.30	382.18	6.58	7.02	6.800
		SD	9.1	1.9	4.10	15.59	1.76	1.43	1.376
36710052	4		19	5	12.0	306.4	6.0	4.0	5.00
36710054			26	6	16.0	218.5	6.9	6.5	6.70
36710056			13	В	10.5	265.1	7.5	7.5	7.50
36710058			8	7	7.5	307.1	9.4	9.0	9.20
36710060			20	6	13.0	309.3	9.4	9.2	9.30
		Mean	17.2	6.4	11.80	281.28	7.84	7.24	7.540
		SD	6.9	1.1	3.13	39.64	1.52	2.12	1.804

APPENDIX 2.2 - Neurotoxicity assessment - Sensory reaction to stimuli - At the end of recovery - Individual data

STUDY NO.:

Animal	Group	APPR	TOUC	CLIK	TAIL	PUPI	RIGH
Number							
36710011	1	1	1	1	1	+	1
36710013		1	1	2	1	+	1
36710015 36710017		<u> </u>	1	2	1	+	1
36710017		1	1	2	1	++	1
36710051	4	1	1	2	1	+	1
36710053 36710055		1	1	2	1	+	1
36710057		1	1	2	1	+	1
36710059		1	1	2	ī	+	1

APPENDIX 2.2 - Neurotoxicity assessment - Sensory reaction to stimuli - At the end of recovery - Individual data

STUDY NO.:

Animal Number	Group		GRI1 s	GRI2	GRIM s	BW g	LAN1 cm	LAN2	LANM
36710011	1		16	3	9.5	251.6	7.5	7.7	7.60
36710013			27	10	18.5	225.1	8.1	6.5	7.30
36710015			9	9	9.0	233.6	6.1	7.2	6.65
36710017			11	10	10.5	235.4	5.1	5.9	5.50
36710019			5	5	5.0	233.4	4.5	5.5	5.00
		Mean	13.6	7.4	10.50	235.82	6.26	6.56	6.410
		SD	8.5	3.2	4.94	9.68	1.53	0.90	1.127
36710051	4		7	9	8.0	219.5	4.9	4.0	4.45
36710053			9	11	10.0	197.5	6.2	4.3	5.25
36710055			13	7	10.0	213.3	8.0	4.0	6.00
36710057			11	3	7.0	226.7	6.7	4.2	5.45
36710059			4	4	4.0	225.0	2.6	3.4	3.00
		Mean	8.8	6.8	7.80	216.40	5.68	3.98	4.830
		SD	3.5	3.3	2.49	11.79	2.05	0.35	1.164

4-week oral toxicity study in rats followed by a 2 week recovery period

APPENDIX 3.1 - Motor activity - At the end of treatment - Individual data

STUDY NO.:

Group		COUN	
1		673	
	Moan		
	20	200.0	
2		1162	
	Mean		
	SD	198.7	
3		1202	
-			
	Mean		
	SD		
4			
		812	
		335	
	Mean	846.1	
	SD	322.2	
	2	Mean SD 2 Mean SD 3 Mean SD 4	1029 778 778 778 778 778 778 778 778 778 77

APPENDIX 3.1 - Motor activity - At the end of treatment - Individual data

STUDY NO.:

Animal				
Number	Group		COUN	
36710001	1		958	
36710003			919	
36710005			1183	
36710007			801	
36710009			1167	
36710011			1108	
36710013			875	
36710015			1153	
36710017			1181	
36710019			926	
		Mean	1027.1	
		SD	145.6	
36710021	2		894	
36710023			755	
36710025			1024	
36710029			1018	
		Mean	922.8	
		SD	126.9	
36710031	3		1036	
36710031	,		875	
36710035			900	
36710037			1000	
36710039			972	
30120023		Mean	956.6	
		SD	67.5	
36710041	4		838	
36710043			1062	
36710045			900	
36710047			116 9	
36710049			1084	
36710051			622	
36710053			717	
36710055			995	
36710057			1049	•
36710059			924	
		Mean	936.0	
		SD	171.9	
~				

APPENDIX 3.2 - Motor activity - At the end of recovery - Individual data

STUDY NO.:

Animal Number	Group		COUN	
36710012 36710014 36710016 36710018 36710020	1	Mean SD	1109 1100 918 449 1076 930.4 280.1	
36710052 36710054 36710056 36710058 36710060	4	Mean SD	478 944 812 1118 969 864.2 241.7	

APPENDIX 3.2 - Motor activity - At the end of recovery - Individual data

STUDY NO.:

Animal Number	Group		COUN	
36710011 36710013 36710015 36710017 36710019	1	Mean SD	1179 813 1067 1020 820 979.8 159.9	
36710051 36710053 36710055 36710057 36710059	4	Mean SD	843 917 1075 844 966 929.0 96.8	

APPENDIX 4.1 - Body weight (g) - During treatment - Individual data

STUDY NO.:

MALES

Animal				Day	of Pha	s e		
Number	Group	1!	1"	8	15	22	29	
36710002	1	200.5	250.1	296.2	323.2	345.0	340.0	
6710004		189.6	250.6	298.6	338.3	367.8	365.3	
6710006		202.4	256.0	294.8	327.6	350.8	352.5	
6710008		208.0	259.0	294.7	325.9	340.6	345.0	
6710010		204.6	260.6	304.0	332.2	355.1	352.6	
6710012		191.2	250.5	297.2	325.0	349.5		
6710014		202.9	252.4	280.7	307.1	333.9		
6710016		198.5	250.0	285.7	318.3	347.3		
6710018		195.1	242.4	277.4	297.7	324.7		
6710020		195.4	245.2	291.6	320.5	351.0		
	(n)	10	10	10	10	10	5	
	Mean	198.83	251.67	292.10	321.58	346.56	351.08	
	SD	5.93	5.66	8.36	11.81	11.76	9.58	
5710022	2	202.5	251.2	300.5	330.3	356.4	340.4	
6710024		188.6	239.4	279.4	299.6	324.7	322.0	
6710026		198.9	245.6	285.0	302.9	334.7	325.1	
6710028		198.1	247.6	291.1	316.6	346.1	345.9	
6710030		208.6	260.4	303.2	328.3	367.3	356.1	
	(n)	5	5	5	5	5	5	
	Mean	199.35	248.83	291.84	315.54	345.82	337.91	
	SD	7.28	7.73	10.09	14.11	16.90	14.31	

APPENDIX 4.1 - Body weight (g) - During treatment - Individual data

STUDY NO.:

MALES

Animal				Day	of Pha			
Number	Group	1!	1"	8	15	22	29	
36710032	3	191.5	251.5	290.5	322.5	352.8	348.6	
86710034		200.0	263.1	299.5	332.4		354.5	
6710036		203.3	248.6	291.2	328.3	363.9	358.5	
6710038		198.4	252.0	292.7	308.6	344.5	331.6	
6710040		205.3	259.3	295.5	321.6	346.1	337.9	
	(n)		5			5	5	
	Mean	199.71	254.91	293.88	322.67	351.92	346.24	
	SD	5.33	6.07	3.67	9.03	7.66	11.27	
6710042	4	208.7	257.4	293.9	307.7	303.0	246.5	
6710044		195.4	246.5	297.2	332.3	342.8	294.7	
6710046		192.3	245.0	280.9	300.0	310.9	279.5	
6710048		206.9	255.6	306.9	325.5	348.5	309.1	
6710050		199.8	252.7	298.6	314.7	306.9	263.7	
6710052		203.2	254.1	290.5	321.5	330.0		
6710054		201.1	253.2	296,8	326.9	326.8		
6710056		202.7	255.5	293.7	316.8	313.9		
6710058		185.0	234.3	279.0	293.2	303.3		
6710060		198.2	241.6	284.9	318.1	327.6		
	(n)	10	10	10	10	10	5	
	Mean	199.33	249.58	292.24	315.66		278.69	
	SD	7.04	7.46	8.61	12.27		24.70	

APPENDIX 4.1 - Body weight (g) - During treatment - Individual data

STUDY NO.:

FEMALES

Animal	4 44 144 145 TO 00 00 00 00 00 00 00 00				Day	of Pha	s e		
Number	Group		1!	1"	8	15	22	29	
36710001	1		161.4	193.7	211.4	211.6	238.3	245.9	
36710003			165.9	180.7	199.3	213.1	233.4	243.7	
36710005			163.7	185.7	208.7	218.7	237.6	237.3	
36710007			166.7	174.9	187.6	199.5	215.0	230.1	
36710009			159.8	180.3	192.7	204.4	213.1	219.0	
36710011			155.0	177.5	192.4	204.6	234.8		
36710013			156.5	170.1	190.0	190.7	209.2		
36710015			153.9	159.3	171.1	188.7	207.7		
36710017			152.4	160.0	184.3	197.8	216.2		
36710019			149.8	163.3	181.2	203.3	223.9		
		(n)	10	10	10	10	10	5	
	М	lean	158.51	174.55	191.88	203.24	222.92	235.19	
		SD	5.88	11.36	12.24	9.53	12.14	10.93	
36710021	2		152.7	170.0	181.8	210.9	226.2	229.7	
36710023			159.7	181.4	204.0	227.6	241.6	244.5	
36710025			163.6	182.0	198.1	211.0	218.3	235.3	
36710027			153.7	166.3	179.3	198.9	215.6		
36710029				184.3	196.7	218.9	223.1	238.5	
		(n)	5	5	5	5	5	4	
	М	lean	159.66	176.80	191.97	213.44	224.97	237.02	
		SD	6.66	8.07	10.83	10.67	10.19	6.18	

APPENDIX 4.1 - Body weight (g) - During treatment - Individual data

STUDY NO.:

FEMALES

Animal					Day	of Pha	s e		
Number	Group		1!	1"	8	15	22	29	
36710031	3		166.9	180.6	218.0	227.9	234.9	253.6	
36710033			162.0	181.1	196.7	205.1	223.3	226.2	
36710035			154.0	163.6	189.3	199.1	220.8	234.5	
36710037			157.0	169.0	187.8	193.6	205.8	222.3	
36710039			151.5	172.8	182.1	198.4	213.1	221.6	
		(n)	5	5	5	5	5	5	
		Mean	158.28	173.42	194.78	204.80	219.57	231.64	
		SD	6.18	7.53	13.99	13.53	10.97	13.29	
36710041	4		151.6	169.1	164.2	189.2	195.1	210.1	
36710043			156.1	167.9	191.9	194.8	212.5	209.7	
36710045			157.0	175.0	184.7	202.0	209.2	203.7	•
36710047			166.2	170.5	194.4	206.2	225.4	219.6	
36710049			169.1	189.6	199.4	214.2	222.4	222.4	
36710051			162.9	181.2	196.8	205.7	224.3		
36710053			151.5	175.4	181.3	206.4	200.9		
36710055			155.8	177.7	195.4	199.4	210.1		
36710057			164.6	169.9	194.6	204.7	222.3		
36710059			154.3	185.0	194.7	202.0	211.7		
		(n)	10	10	10	10	10	5	
		Mean	158.92	176.11	189.75	202.43	213.40	213.07	
		SD	6.30	7.27	10.54	6.89	10.26	7.70	

4-week oral toxicity study in rats followed by a 2 week recovery period

APPENDIX 4.2 - Body weight (g) - During recovery - Individual data

STUDY NO.:

MALES

Animal			Day of Phase	
Number	Group	1	8	15
6710012	1	372.5	388.5	384.0
6710014		351.1	366.7	353.2
6710016		371.4	397.3	386.2
6710018		341.3	357.0	343.1
6710020		371.5	388.6	376.5
	(n)	5	5	5
	Mean	361.56	379.63	368.60
	SD	14.45	16.96	19.32
6710052	4	316.3	303.0	284.1
6710054		297.8	225.4	233.4
6710056		285.3	262.1	253.3
6710058		303.2	306.8	304.3
6710060		308.2	310.4	308.1
	(n)	5	5	5
	Mean	302.16	281.52	276.64
	SD	11.63	36.96	32.49

Note: Data for Recovery phase

APPENDIX 4.2 - Body weight (g) - During recovery - Individual data

STUDY NO.:

FEMALES

Animal			Day of Phase	
lumber	Group	1	8	15
36710011	1	245.3	254.0	240.8
6710013		219.9	225.9	218.1
6710015		226.3	230.3	222.7
6710017		231.9	226.4	225.6
6710019		233.3	231.9	220.8
	(n)	5	5	5
	Mean	231.34	233.68	225.59
	SD	9.42	11.63	8.92
6710051	4	206.4	220.8	201.5
6710053		203.8	202.8	194.3
6710055		206.7	215.0	200.0
86710057		220.9	224.6	214.9
6710059		201.8	226.5	213.1
	(n)	5	5	5
	Mean	207.92	217.92	204.76
	SD	7.53	9.52	8.87

Note: Data for Recovery phase

APPENDIX 5.1 - Body weight change (g) - During treatment - Individual data

STUDY NO.:

Animal			Day	of Phase		
Number	Group	8	15	22	29	
36710002	1	46.2	73.2	94.9	89.9	
36710004		48.0	87.7	117.2	114.7	
36710006		38.8	71.6	94.7	96.4	
36710008		35.7	67.0	81.6	86.1	
36710010		43.4	71.6	94.5	92.1	
36710012		46.7	74.4	99.0		
36710014		28.3	54.7	81.5		
36710016		35.8	68.3	97.3		
36710018		35.0	55.3	82.3		
36710020		46.4	75.3	105.8		
	(n)	10	10	10	5	
	Mean	40.42	69.91	94.89	95.83	
	SD	6.66	9.66	11.31	11.20	
36710022	2	49.4	79.1	105.2	89.2	
36710024		40.0	60.2	85.2	82.6	
36710026		39.4	57.3	89.1	79.5	
36710028		43.5	69.0	98.5	98.4	
36710030		42.8	68.0	106.9	95.7	
	(n)	5	5	5	5	
	Mean	43.01	66.71	96.99	89.07	
	SD	3.97	8.55	9.59	8.14	

 $^{^{\}circ}$ = body weight change relevant to Day 1 of study

APPENDIX 5.1 - Body weight change (g) - During treatment - Individual data

STUDY NO.:

Animal			Day	of Phase		
Number	Group	8	15	22	29	
36710032	3	39.1	71.0	101.3	97.2	
36710034		36.4	69.3	89.2	91.4	
36710036		42.6	79.7	115.3	109.9	
36710038		40.8	56.6	92.5	79.7	
36710040		36.1	62.2	86.8	78.6	
	(n)	5	5	5	5	
	Mean	38.98	67.76	97.01	91.34	
	SD	2.78	8.79	11.62	13.00	
36710042	4	36.5	50.3	45.6	-10.9	
36710044		50.7	85.9	96.3	48.3	
36710046		35.9	54.9	65.8	34.4	
36710048		51.3	69.9	93.0	53.5	
36710050		46.0	62.1	54.3	11.0	
36710052		36.4	67.4	75.9		
36710054		43.6	73.7	73.6		
36710056		38.2	61.3	58.5		
36710058		44.7	58.9	68.9		
86710060		43.3	76.5	86.0		
	(n)	10	10	10	5	
	Mean	42.66	66.08	71.78	27.26	
	SD	5.78	10.74	16.62	26.92	

^{° =} body weight change relevant to Day 1 of study

4-week oral toxicity study in rats followed by a 2 week recovery period

APPENDIX 5.1 - Body weight change $^{\circ}$ (g) - During treatment - Individual data

STUDY NO.:

Animal	_		Day			
Number	Group	8	15	22	29	
36710001	1	17.8	17.9	44.6	52.2	
36710003		18.6	32.4	52.7	63.0	
36710005		23.0	33.0	51.8	51.6	
36710007		12.7	24.6	40.1	55.2	
36710009		12.4	24.1	32.8	38.7	
36710011		14.9	27.1	57.3		
36710013		20.0	20.6	39.2		
36710015		11.8	29.5	48.4		
36710017		24.3	37.8	56.2		
36710019		17.9	39.9	60.5		
	(n)	10	10	10	5	
	Mean	17.33	28.69	48.37	52.12	
	SD	4.39	7.18	9.01	8.76	
36710021	2	11.8	40.8	56.2	59.7	
36710023		22.6	46.2	60.2	63.1	
36710025		16.1	29.0	36.3	53.3	
36710027		12.9	32.6	49.3		
36710029		12.4	34.6	38.8	54.2	
	(n)	5	5	5	4	
	Mean	15.17	36.64	48.17	57.59	
	SD	4.48	6.86	10.46	4.66	

^{° =} body weight change relevant to Day 1 of study

4-week oral toxicity study in rats followed by a 2 week recovery period

APPENDIX 5.1 - Body weight change° (g) - During treatment - Individual data

STUDY NO.:

Animal		_	Day			
Number	Group	8	15	22	29	
36710031	3	37.5	47.3	54.3	73.0	
36710033		15.5	24.0	42.2	45.1	
36710035		25.7	35.4	57,2	70.8	
36710037		18.8	24.6	36.8	53.3	
36710039		9.4	25.6	40.3	48.8	
	(n)	5	5	5	5	
	Mean	21.36	31.38	46.15	58.22	
	SD	10.75	10.05	9.02	12.87	
36710041	4	-4.9	20.1	26.0	41.0	
36710043		24.0	26.8	44.6	41.7	
36710045		9.7	27.0	34.3	28.7	
36710047		23.9	35.6	54.9	49.0	
36710049		9.8	24.6	32.8	32.8	
36710051		15.6	24.5	43.1		
36710053		5.9	31.0	25.5		
36710055		17.7	21.6	32.4		
36710057		24.8	34.8	52.5		
36710059		9.8	17.0	26.8		
	(n)	10	10	10	5	
	Mean	13.63	26.32	37.29	38.67	
	SD	9.45	6.11	10.84	7.99	

^{° =} body weight change relevant to Day 1 of study

APPENDIX 5.2 - Body weight change° (g) - During recovery - Individual data

STUDY NO.:

Animal		D	ay of Phase		
Number	Group	1	8	15	
36710012	1	122.0	137.9	133.4	
36710014		98.7	114.3	100.8	
36710016		121.4	147.3	136.2	
36710018		98.9	114.6	100.8	
36710020		126.3	143.5	131.3	
	(n)	5	5	5	
	Mean	113.46	131.53	120.50	
	SD	13.52	15.94	18.09	
36710052	4	62.2	48.9	30.0	
36710054		44.6	-27.8	-19.8	
36710056		29.8	6.6	-2.1	
36710058		68.9	72.5	70.0	
36710060		66.6	68.8	66.5	
	(n)	5	5	5	
	Mean	54.42	33.78	28.90	
	SD	16.72	43.25	40.11	

^{° =} body weight change relevant to Day 1 of study

APPENDIX 5.2 - Body weight change° (g) - During recovery - Individual data

STUDY NO.:

Animal			ay of Phase		
Number	Group	1	ay or rhase	15	
36710011	1	67.8	76.5	63.3	
36710013		49.8	55.8	48.0	
36710015		67.0	71.0	63.4	
36710017		71.9	66.4	65.7	
36710019		70.0	68.5	57.5	
	(n)	5	5	5	
	Mean	65.31	67.65	59.56	
	SD	8.86	7.62	7.13	
36710051	4	25.2	39.6	20.4	
36710053		28.4	27.4	18.9	
36710055		29.0	37.3	22.3	
36710057		51.0	54.7	45.0	
36710059		16.8	41.5	28.2	
	(n)	5	5	5	
	Mean	30.11	40.11	26.95	
	SD	12.67	9.81	10.69	

^{° =} body weight change relevant to Day 1 of study

APPENDIX 6.1 - Food consumption° (g/animal/day) - During treatment - Cage data

STUDY NO.:

MALES

			Dау			
Cage 	Group	8!	8"	15	22	29
1	1	25.1	27.3	25.7	28.0	24.8
2		25.2	26.0	27.0	26.8	27.4
	(n)	2	2	2	2	2
	Mean	25.13	26.64	26.35	27.40	26.09
3	2	24.8	25.9	28.0	27.6	23.4
	(n)	1	1	1	1.	1
4	3	25.2	26.6	27.6	27.7	24.0
	(n)	1	1	1	1	1
5	4	25.8	27.7	26.9	25.8	18.7
6		24.0	25.5	24.0	25.2	23.1
	(n)	2	2	2	2	2
	Mean	24.89	26.62	25.46	25.47	20.90

^{° =} food consumed over the previous period

4-week oral toxicity study in rats followed by A 2 week recovery period

APPENDIX 6.1 - Food consumption° (g/animal/day) - During treatment - Cage data

STUDY NO.:

			Day	of Phase		
age	Group	8!	8"	15	22	29
7	1	17.8	18.3	17.8	18.9	19.8
8		15.8	17.6	18.2	19.5	19.6
	(n)	2	2	2	2	2
	Mean	16.82	17.95	17.99	19.17	19.73
9	2.	17.6	18.4	19.9	19.6	19.0
	(n)	1	1	1	1	1
10	3	17.5	18.5	18.5	18.9	18.5
	(n)	1	1	1	1	1
11	4	16.5	16.8	18.3	19.2	18.9
12		18.1	18.3	17.5	18.4	17.7
	(n)	2	2	2	2	2
	Mean	17.28	17.58	17.88	18.81	18.34

Note: ! = Pretest phase; " = Dosing phase
" = food consumed over the previous period

4-week oral toxicity study in rats followed by a 2 week recovery period

APPENDIX 6.2 - Food consumption° (g/animal/day) - During recovery - Cage data

STUDY NO.:

MALES

Cage	Group		8	Day	o f	Phase	14
2	1	(n)	26.8 1				26.8 1
6	4	(n)	17.9 1				24.4

Note: Data for Recovery phase

[&]quot; = food consumed over the previous period

APPENDIX 6.2 - Food consumption° (g/animal/day) - During recovery - Cage data

STUDY NO.:

FEMALES

Cage	Group		8	Day	o f	Phase	14
8	1	(n)	18.7	w w w w			18.6 1
12	4	(n)	19.0 1				18.5 1

Note: Data for Recovery phase

[&]quot; = food consumed over the previous period

APPENDIX 7.1 - Haematology - At the end of treatment - Individual data

STUDY NO.:

Animal Number	Group		RBC 10^12/1				MCH pg	
36710002	1			15.2	43.9	53.3	18.5	34.6
36710004	1		7.67	14.8	42.7	55.7	19.4	34.7
36710006	1		7.82	15.6	44.3	56.6	19.9	35.2
36710008	1		8.11	15.0	42.6	52.5	18.5	35.3
36710010	1		7.74	14.8	42.0	54.2	19.1	35.3
		Mean	7.914	15.08	43.10	54.46	19.08	35.02
		SD		0.33		1.69	0.60	0.34
36710022	2		7.63	15.0	42.1	55.2	19.7	35,6
36710024			7.71	14.9	40.9	53.1	19.4	36.5
36710026	2		7.41	14.1	39.1	52.7	19.1	36.2
36710028	2			15.1		52.0		35.6
36710030	2			15.7		54.7		35.3
		Mean				53.54	19.20	35.84
		SD	0.327	0.57		1.36		0.49
36710032	3			14.6		54.5		35.2
	3			14.2		54.6	19.5	35.8
36710036	3			14.2		54.2	19.3	35.6
36710038	3			15.7		57.1	20.2	35.4
36710040	3			14.9	42.2	55.9	19.B	35.4
		Mean		14.72	41.54	55.26		35.48
		SD		0.62	1.94	1.22	0.41	0.23
36710042	4		8.68	16.4	46.6	53.7	18.9	35.2
36710044	4			15.3		54.3	19.1	35.2
36710046	4			15.9		53.5		35.2
36710048	4			14.8		56.0		34.9
36710050	4			15.7		52.8		36.1
				15.62		54.06	19.10	35.32
		SD	0.421	0.61	1.62	1.21	0.31	0.45

APPENDIX 7.1 - Haematology - At the end of treatment - Individual data

STUDY NO.:

Animal Number	Group		PLT 10^9/1	PT sec	
36710002 36710004 36710006 36710008 36710010	1 1 1 1 1	Mean SD	861 976 9733 896	15.3 15.3 16.5 15.3 16.7 15.82 0.72	
36710022 36710024 36710026 36710028 36710030	2 2 2 2 2 2	Mean SD	806 931 820 888 695	16.7 16.8 17.9 16.1 17.1 16.92 0.66	
36710032 36710034 36710036 36710038 36710040	3 3 3 3 3	Mean SD	848 723 771 760 683 757.0 61.5	16.5 15.6 16.6 15.8 16.1 16.12	
36710042 36710044 36710046 36710048 36710050	4 4 4 4 4	Mean SD	874 924 820 809 954 876.2 63.3	18.0 17.6 17.6 17.9 18.8 17.98 0.49	·····

APPENDIX 7.1 - Haematology - At the end of treatment - Individual data

STUDY NO.:

Animal Number	Group		WBC 10^9/1	NEU %	LYM \$	MON %	EOS %	BAS %	LUC %	
36710002	1		9.34	22.0	73.6	2.9	0.7	0.1	0.7	
36710004	1		8.79	23.9	71.5	2.8	0.9	0.2	0.8	
36710006	1		7.46	17.8	77.3	3.0	1.0	0.2	0.8	
36710008	1		8.49	14.0	80.3	3.3	1.4	0.3	0.7	
36710010	1		7.99	23.7	72.3	2.6	0.5	0.2	0.7	
		Mean	8.414	20.28	75.00	2.92	0.90	0.20	0.74	
		SD	0.724	4.28	3.70	0.26	0.34	0.07	0.05	
36710022	2		8.96	14.5	79.3	3.5	1.3	0.2	1.2	
36710024	2		10.49	7.4	85.4	4.2	1.6	0.3	1.1	
36710026	2		7.23	17.8	77.4	2.8	1.0	0.1	0.9	
36710028	2		7.80	11.6	81.1	4 - 8	1.1	0.2	1.1	
36710030	2		9.41	11.0	84.2	2.7	1.3	0.2	0.5	
		Mean	8.778	12.46	81.48	3.60	1.26	0.20	0.96	
		SD	1.296	3.91	3.33	0.90	0.23	0.07	0.28	
36710032	3		8.01	17.2	75.7	4.4	1.4	0.2	1.1	
36710034	3		8.02	16.2	78.6	2.9	1.1	0.4	0.8	
36710036	3		12.50	22.4	72.7	2.9	1.1	0.4	0.5	
36710038	3		6.48	16.8	77.3	3.0	1.8	0.5	0.6	
36710040	3		5.81	9.5	85.3	3.1	0.8	0.2	1.0	
		Mean	8.164	16.42	77.92	3.26	1.24	0.34	0.80	
		SD	2.609	4.59	4.68	0.64	0.38	0.13	0.25	
36710042	4		6.62	17.7	74.2	6.1	0.6	0.4	1.1	
36710044	4		6.50	19.8	71.7	5.1	0.9	0.9	1.6	
36710046	4		7.38	5.6	89.0	3.0	1.2	0.7	0.5	
36710048	4		7.63	16.9	75.4	3.2	3.0	0.6	1.0	
36710050	4		5.99	12.5	81.2	4.2	0.5	0.5	1.1	
		Mean	6.824	14.50	78.30	4.32	1.24	0.62	1.06	
		SD	0.671	5.64	6.92	1.30	1.02	0.19	0.39	

APPENDIX 7.1 - Haematology - At the end of treatment - Individual data

STUDY NO.:

Animal Number	Group		RBC 10^12/1	HGB g/dl	HCT %	MCV fl	MCH pg	MCHC g/dl
36710001 36710003 36710005 36710007 36710009	1 1 1 1	Mean SD	6.93 7.07 6.60 7.44 6.94 6.996 0.303	13.9 13.7 13.0 14.4 13.2 13.64 0.56	38.0 37.2 35.5 40.2 36.6 37.50 1.76	54.9 52.7 53.8 54.0 52.7 53.62 0.94	20.0 19.4 19.7 19.3 19.0 19.48 0.38	36.4 36.8 36.7 35.8 36.1 36.36
36710021 36710023 36710025 36710029	2 2 2 2	Mean SD	6.96 7.21 7.12 7.07 7.090 0.104	14.0 14.1 14.2 13.8 14.03	38.2 38.4 39.2 38.5 38.58 0.43	54.8 53.2 55.1 54.4 54.38 0.83	20.0 19.5 20.0 19.6 19.78 0.26	36.6 36.6 36.2 36.0 36.35
36710031 36710033 36710035 36710037 36710039	3 3 3 3 3	Mean SD	7.34 7.10 6.96 7.02 7.22 7.128 0.153	14.1 14.1 13.6 13.8 14.4 14.00	38.6 37.8 37.8 38.1 39.9 38.44 0.88	52.6 53.3 54.4 54.3 55.3 53.98 1.05	19.2 19.8 19.5 19.6 20.0 19.62 0.30	36.4 37.2 35.9 36.1 36.1 36.34
36710041 36710043 36710045 36710047 36710049	4 4 4 4 4	Mean SD	6.59 7.08 7.17 7.37 7.12 7.066 0.288	13.2 14.0 13.7 14.4 13.5 13.76 0.46	36.6 38.5 38.9 39.6 36.7 38.06 1.35	55.5 54.5 54.3 53.7 51.5 53.90 1.49	20.1 19.7 19.1 19.5 18.9 19.46 0.48	36.2 36.2 35.3 36.3 36.7 36.14

APPENDIX 7.1 - Haematology - At the end of treatment - Individual data

STUDY NO.:

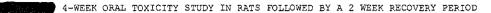
FEMALES

Animal Number	Group		PLT 10^9/1	PT sec
36710001	1		1057	16.7
36710003	1		840	16.8
36710005	1		940	17.2
36710007	1		NT	NT
36710009	1		135	NT
			743.0	16.90
		SD	414.9	0.26
36710021	2		1000	
36710021	2		1032 1056	16.4
36710023	2			17.3
36710025	2		908 980	16.5 17.6
36/10029	2	Moss	994.0	17.6
		SD	65.5	0.59
			OJ.J	
36710031	3		920	16.5
36710033	3		857	16.4
36710035	3		844	16.7
36710037	3		991	17.1
36710039	3		914	17.2
		Mean	905.2	16.78
		SD	58.6	0.36
36710041	4		843	15.5
36710041	4		840	17.4
36710045	4		832	15.9
36710043	4		743	17.2
36710047	4		853	18.0
00,10049	7	Mean	822.2	16.80
		SD	44.9	
		SD 	44.9	1.06

NT = NOT TAKEN

APPENDIX 7.1 - Haematology - At the end of treatment - Individual data

STUDY NO.:


Animal Number	Group		WBC 10^9/1	NEU %	LYM %	MON %	EOS %	BAS %	LUC %
36710001 36710003 36710005 36710007 36710009	1 1 1 1	Mean SD	8.86 7.08 6.66 6.98 6.04 7.124 1.052	4.8 12.7 14.7 7.3 7.9 9.48 4.09	90.1 82.2 81.0 87.4 84.6 85.06 3.73	2.8 2.9 2.0 3.2 5.1 3.20 1.15	1.1 1.4 1.5 1.5 1.7 1.44	0.2 0.1 0.1 0.2 0.1 0.14	0.9 0.6 0.8 0.6 0.7 0.72
36710021 36710023 36710025 36710029	2 2 2 2	Mean SD	7.43 7.59 6.69 6.99 7.175 0.411	17.4 12.3 11.4 8.8 12.48 3.60	74.5 80.9 83.6 85.0 81.00 4.66	5.0 3.8 2.7 4.0 3.88 0.94	0.40	0.2 0.1 0.1 0.2 0.15 0.06	0.9 1.0 0.8 0.8 0.88 0.10
36710031 36710033 36710035 36710037 36710039	3 3 3 3	Mean SD	6.75 6.27 4.59 6.38 5.63 5.924 0.848	6.2 14.2 16.1 10.1 10.9 11.50 3.84	86.0 79.3 78.9 84.8 80.8 81.96 3.25	4.2 2.9 2.8 2.3 3.7 3.18 0.76	2.2 2.5 1.5 2.0 3.5 2.34 0.74	0.2 0.2 0.1 0.2 0.1 0.16 0.05	1.2 0.9 0.6 0.6 1.0 0.86 0.26
36710041 36710043 36710045 36710047 36710049	4 4 4 4 4	Mean SD	3.12 9.47 5.68 4.06 6.70 5.806 2.475	9.5 9.2 11.1 7.2 7.4 8.88 1.61	86.1 86.3 83.0 85.9 86.2 85.50	2.6 2.6 3.1 3.8 3.9 3.20 0.63	1.1 0.9 1.8 1.9 1.3 1.40	0.1 0.1 0.2 0.2 0.2 0.2 0.16	0.6 0.9 0.9 1.0 1.1 0.90 0.19

APPENDIX 7.2 - Haematology - At the end of recovery - Individual data

STUDY NO.:

Animal Number	Group		RBC 10^12/1	HGB g/dl	HCT %	MCV fl	MCH pg	MCHC g/dl
36710012	1		8.30	15.3	43.6	52.6	18.5	35.2
36710014	1		8.44	15.5	43.4	51.4	18.3	35.7
36710016	1		8.05	15.2	42.9	53.3	18.8	35.4
36710018	1		8.08	14.7	41.1	50.9	18.2	35.8
36710020	1		8.31	15.4	43.0	51.7	18.5	35.7
		Mean	8.236	15.22	42.80	51.98	18.46	35.56
		SD	0.166	0.31	0.99	0.96	0.23	0.25
36710052	4		8.05	14.7	39.4	49.0	18.3	37.4
36710054	4		6.64	12.4	33.0	49.7	18.7	37.6
36710056	4		7.62	14.3	38.9	51.0	18.8	36.8
36710058	4		7.65	14.5	39.4	51.5	19.0	36.9
36710060	4		7.55	13.9	38.8	51.5	18.4	35.8
		Mean	7.502	13.96	37.90	50.54	18.64	36.90
		SD	0.520	0.92	2.75	1.13	0.29	0.70

APPENDIX 7.2 - Haematology - At the end of recovery - Individual data

STUDY NO.:

Animal Number	Group		PLT 10^9/1	PT sec
36710012			866	16.2
36710014	1		880	16.9
36710016	1		941	16.3
36710018	1		970	15.5
36710020	1		976	16.2
•		Mean	926,6	16.22
		SD	50.9	0.50
36710052	4		1295	17.7
36710054	4		953	18.4
36710056	4		1247	17.0
36710058	4		877	18.0
36710060	4		1030	16.4
		Mean	1080.4	17.50
		SD	183.0	0.80

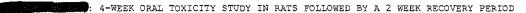
APPENDIX 7.2 - Haematology - At the end of recovery - Individual data

STUDY NO.:

Animal Number	Group		WBC 10^9/1	neu \$	LYM %	MON g	EOS %	BAS %	fnc *
36710012	1		8.99	8.6	86.7	3.0	0.8	0.2	0.7
36710014	1		10.81	9.0	86.8	2.2	1.0	0.2	0.9
36710016	1		12.68	13.5	81.7	2.4	1.4	0.2	0.9
36710018	1		11.88	22.7	70.9	2.9	2.7	0.1	0.7
36710020	1		8.56	14.5	79.9	3.7	1.2	0.1	0.6
		Mean	10.584	13.66	81,20	2.84	1.42	0.16	0.76
		SD	1.786	5.70	6.51	0.59	0.75	0.05	0.13
36710052	4		12.17	25.9	67.7	3.8	1.4	0.2	0.9
36710054	4		5.47	11.5	83.4	3.2	0.8	0.1	1.0
36710056	4		9.70	5.9	89.3	2.6	1.2	0.2	0.8
36710058	4		8.90	7.1	88.4	2.6	0.9	0.2	0.8
36710060	4		8.36	8.2	86.3	3.6	1.1	0.1	0.7
		Mean	8,920	11.72	83.02	3.16	1.08	0.16	0.84
		SD	2.418	8.20	8.86	0.55	0.24	0.05	0.11

APPENDIX 7.2 - Haematology - At the end of recovery - Individual data

STUDY NO.:


Animal Number	Group		RBC 10^12/1	HGB g/dl	HCT %	MCV fl	MCH Pg	MCHC g/dl
36710011	1		7.83	15.1	41.4	52.8	19.3	36.5
36710013	1		7.54	14.4	40.0	53.0	19.1	36.1
36710015	1		7.39	14.4	38.9	52.6	19.5	37.1
36710017	1		7.59	14.0	39.3	51.8	18.4	35.5
36710019	1		7.31	14.1	38.9	53.2	19.3	36.2
		Mean	7.532	14.40	39.70	52.68	19.12	36.28
		SD	0.201	0.43	1.05	0.54	0.43	0.58
36710051	4		6.83	13.4	36.8	53.9	19.7	36.5
36710053	4		6.84	13.2	36.3	53.0	19.3	36.4
36710055	4		7.26	14.0	38.5	53.0	19.3	36.4
36710057	4		7.41	14.1	39.5	53.3	19.0	35.6
36710059	4		6.95	12.8	36.4	52.4	18.5	35.2
		Mean	7.058	13.50	37.50	53.12	19.16	36.02
		SD	0.263	0.55	1.43	0.54	0.44	0.58

APPENDIX 7.2 - Haematology - At the end of recovery - Individual data

STUDY NO.:

Animal Number	Group		PLT 10^9/1	PT sec
36710011	1		871	16.4
36710013	1		916	16.7
36710015	1		964	17.1
36710017	1		872	17.1
36710019	1		848	17.6
		Mean	894.2	16.98
		SD	46.1	0.45
36710051	4		976	16.5
36710053	4		756	15.8
36710055	4		937	16.3
36710057	4		901	16.4
36710059	4		794	16.9
		Mean	872.8	16.38
		SD	94.1	0.40

APPENDIX 7.2 - Haematology - At the end of recovery - Individual data

STUDY NO.:

Animal Number	Group		WBC 10^9/1	neu %	LYM %	MON %	EOS %	BAS %	# LUC
36710011	1		11.54	9.0	84.0	4.1	1.3	0.3	1.2
36710013	1		8.23	7.9	84.2	4.9	1.4	0.1	1.5
36710015	1		7.10	8.2	84.4	3.8	2,4	0.2	1.1
36710017	1		8.31	7.7	85.1	4.1	1.7	0.2	1.2
36710019	1		8.10	10.2	84.5	3.0	1.2	0.2	1.0
		Mean	8.656	8.60	84.44	3.98	1.60	0.20	1.20
		SD	1.684	1.02	0.42	0.68	0.48	0.07	0.19
36710051	4		7.70	7.3	87.7	3.3	0.7	0.1	0.9
36710053	4		8.29	5.1	88.3	3.2	1.2	0.2	1.9
36710055	4		6.49	10.2	85.2	3.0	0.9	0.1	0.7
36710057	4		7.89	5.8	89.8	2.2	1.4	0.1	0.8
36710059	4		8.28	10.8	83.7	3.3	1.0	0.2	1.0
		Mean	7.730	7.84	86.94	3.00	1.04	0.14	1.06
		SD	0.738	2.56	2.46	0.46	0.27	0.05	0.48

APPENDIX 8.1 - Clinical chemistry - At the end of treatment - Individual data

STUDY NO.:

Animal Number	Group		AP U/1	U/l	AST U/l	GGT U/l	BILT mg/dl	CHOL mg/dl	TRI mg/dl	GLU mg/dl
36710002	1		215.1	30.5	75.2	0.10	0.11	72.1	34.0	100.5
36710004	1		313.3	36.2	92.2	0.10	0.09	75.8	48.9	127.3
36710006	1		220.1	28.6	86.6	0.20	0.11	65.2	26.4	91.0
36710008	1		271.6	31.2	79.0	0.20	0.13	93.9	45.5	99.6
36710010	1		269.5	31.3	72.5	0.50	0.12	64.6	34.5	114.5
		Mean	257.92	31.56	81.10	0.220	0.112	74.32	37.86	106.58
		SD	40.78	2.81	8.16	0.164	0.015	11.92	9.19	14.32
36710022	2		249.9	41.5	72.4	0.00	0.09	42.6	33.7	123.4
36710024	2 2		227,1	26.5	69.0	0.00	0.07	56.7	15.0	113.6
36710026	2		233.5	29.0	73.9	0.30	0.02	35.4	24.2	149.3
36710028	2		264.3	29.7	72.3	0.00	0.10	58.4	29.9	99.7
36710030	2		229.5	43.0	88.8	0.70	0.09	52.7	33.1	119.9
		Mean	240.86	33.94	75.28	0.200	0.074	49.16	27.18	121.18
		SD	15.84	7.70	7.77	0.308	0.032	9.84	7.78	18.14
36710032	3		288.7	46.2	86.1	0.00	0.04	52.3	16.7	114.7
36710034	3		353.6	253.4	195.1	0.10	0.07	65.4	17.6	109.8
36710036	3		259.8	73.5	102.5	0.00	0.09	63.9	17.8	133.2
36710038	3		301.5	43.9	89.0	0.00	0.09	49.4	20.1	117.0
36710040	3		312.8	229.0	166.8	0.00	0.09	54.1	20.3	122.2
		Mean	303.28	129.20	127.90	0.020	0.076	57.02	18.50	119.38
		SD	34.38	103.26	49.84	0.045	0.022	7.18	1.61	8.92
36710042	4		260.4	117.9	140.5	0.00	0.23	85.5	39.4	125.3
36710044	4		339.3	82.1	120.0	0.10	0.20	66.9	35.5	135.9
36710046	4		410.8	84.0	99.4	0.10	0.13	76.5	34.3	121.3
36710048	4		391.8	68.8	107.3	0.00	0.17	85.2	38.0	116.5
36710050	4		306.8	150.3	184.3	0.10	0.22	78.5	34.0	122.0
		Mean		100.62	130.30	0.060	0.190	78.52	36.24	124.20
		SD	61.48	33.16	33.95	0.055	0.041	7.62	2.37	7.26

APPENDIX 8.1 - Clinical chemistry - At the end of treatment - Individual data

STUDY NO.:

Animal Number	Group		UREA mg/dl	CREA mg/dl	CL mmol/l	PHOS mg/dl	CA mmol/l	Na mmol/l	K mmol/l
36710002	1		43.2	0.31	92.7	8.3	2.51	144.2	4.12
36710004	1		41.2	0.32	91.8	9.0	2.62	145.0	3.77
36710006	1		41.2	0.30	93.3	8.3	2.72	143.5	3.92
36710008	1		55.9	0.43	92.3	8.4	2.66	144.1	3.70
36710010	1		45.9	0.32	94.4	8.7	2.61	144.1	3.86
		Mean		0.336	92.90		2.624	144.18	3.874
		SD	6.14	0.053	1.00	0.33	0.077	0.54	0.161
36710022	2		43.3	0.36	92.8	8.7	2.67	142.5	3.73
36710024	2		48.9	0.30	94.8	8.3	2.71	142.2	3.80
36710026	2		47.9	0.29	94.4		2.55	141.1	3.68
36710028	2 2		46.0	0.33	93.7	8.6	2.63	146.1	3.77
36710030	2		52.3	0.33	92.3	9.0	2.62	143.1	3.62
		Mean	47.68	0.322	93.60	8.56	2.636	143.00	3.720
		\$D	3.35	0.028	1.05	0.34	0.060	1.88	0.072
36710032	3		61.0	0.33	93.2	7.4	2.58	149.2	4.01
36710034	3		50.0	0.27	94.4	7 - 6	2.62	150.3	3.97
36710036	3		48.1	0.31	92.3	8.0	2.66	148.9	4.14
36710038	3		52.7	0.30	93.8	7.9	2.62	151.9	3.82
36710040	3		51.3	0.37	94.1	8.0	2.58	151.0	4.04
		Mean	52.62	0.316	93.56		2.612	150.26	3.996
		\$D	4.98	0.037	0.83	0.27	0.033	1.25	0.117
36710042	4		64.3	0.27	95.6	6.4	2.22	147.3	4.46
36710044	4		71.1	0.32	94.0	6.3	2.54	145.1	4.13
36710046	4		64.1	0.28	94.4	7.0	2.56	145.5	4.15
36710048	4		70.9	0.29	95.6	7.4	2.48	146.5	4.18
36710050	4		66.9	0.33	95.1	6.3	1.76	146.1	5.52
		Mean	67.46	0.298	94.94	6.68	2.312	146.10	4.488
		SD	3.42	0.026	0.72	0.50	0.337	0.86	0.592

STUDY NO.:

Animal Number	Group		PROT g/dl	ALB g/dl	GLO g/dl	AGR	
36710002	1		6.4	4.0	2,4	1.7	
36710004	1		6.5	4.0	2.5	1.6	
36710006	1		6.5	4.0	2.5	1.6	
36710008	1		6.7	4.1	2.6	1.6	
36710010	1		6.2	3.9	2.3	1.7	
		Mean	6.46	4.00	2.46	1.63	
		SD	0.18	0.07	0.11	0.05	
36710022	2		6.0	3.9	2.1	1.9	
36710024	2		5.9	3.8	2.1	1.8	
36710026	2		5.6	3.7	1.9	1.9	
36710028	2		6.1	3.8	2.3	1.7	
36710030	2		5.9	3.7	2.2	1.7	
		Mean	5.90	3.78	2.12	1.79	
		SD	0.19	0.08	0.15	0.12	
36710032	3		6.4	3.9	2.5	1.6	
36710034	3		6.0	3.8	2.2	1.7	
36710036	3		6.2	4.0	2.2	1.8	
36710038	3		6.2	4.2	2.0	2.1	
36710040	3		6.0	4.0	2.0	2.0	
		Mean		3.98	2.18	1.84	
		SD	0.17	0.15	0.20	0.21	
36710042	4		4.7	3.3	1,4	2.4	
36710044	4		5.6	3.6	2.0	1.8	
36710046	4		5.6	3.9	1.7	2.3	
36710048	4		6.2	3.5	2,7	1.3	
36710050	4		4.9	3.2	1.7	1.9	
		Mean	5.40	3.50	1.90	1.93	
		SD	0.60	0.27	0.49	0.43	

STUDY NO.:

Animal Number	Group		AP U/l	ALT U/l	AST U/l	GGT U/l	BILT mg/dl	CHOL mg/dl	TRI mg/dl	GLU mg/dl
36710001 36710003 36710005 36710007 36710009	1 1 1 1	Mean SD	191.9 191.8 227.5 250.0 178.0 207.84 29.86	28.5 29.0 32.8 35.6 29.8 31.14 3.00	72.7 66.1 73.8 92.6 99.2 80.88 14.22	4.30 0.40 0.10 1.30 0.50 1.320 1.724	0.10 0.09 0.06 0.10 0.10 0.090 0.017	78.4 76.3 66.8 81.6 99.6 80.54 12.00	25.2 36.1 22.3 38.2 34.7 31.30 7.08	108.6 119.0 115.5 99.0 115.8 111.58
36710021 36710023 36710025 36710029	2 2 2 2 2	Mean SD	178.7 156.9 155.8 211.1 175.63 25.89	30.5 23.9 27.2 30.5 28.03 3.16	72.3 62.7 85.4 71.8 73.05 9.34	1.90 1.10 1.40 1.50 1.475 0.330	0.07 0.06 0.07 0.05 0.063 0.010	82.6 62.3 72.0 65.4 70.58 8.98	28.0 19.5 37.3 19.6 26.10 8.46	87.8 119.8 100.3 114.7 105.65 14.48
36710031 36710033 36710035 36710037 36710039	3 3 3 3 3 3	Mean SD	234.5 216.3 211.0 267.7 259.3 237.76 25.24	40.0 44.0 29.2 42.7 67.3 44.64 13.94	73.7 77.8 80.1 86.9 102.5 84.20	0.70 1.30 0.80 0.70 0.50 0.800 0.300	0.06 0.02 0.03 0.04 0.03 0.036 0.015	88.9 65.6 69.5 62.9 69.8 71.34 10.23	29.7 23.9 33.8 26.5 24.7 27.72 4.06	106.8 119.9 114.7 111.1 132.8 117.06 10.03
36710041 36710043 36710045 36710047 36710049	4 4 4 4 4	Mean SD	280.5 224.6 144.8 246.5 205.1 220.30 50.65	56.4 43.1 24.2 31.7 38.9 38.86 12.16	98.6 89.2 67.0 74.0 82.7 82.30 12.41	4.80 5.00 0.80 0.10 1.00 2.340 2.362	0.10 0.05 0.04 0.06 0.05 0.060	80.8 58.3 76.1 91.2 70.9 75.46 12.16	38.8 22.9 30.1 25.1 36.1 30.60 6.84	125.3 130.2 142.5 136.1 134.9 133.80 6.47

STUDY NO.:

Animal Number	Group		UREA mg/dl	CREA mg/dl	CL mmol/l	PHOS mg/dl	CA mmol/l	Na mmol/l	K mmol/l
36710001	1		47.2	0.41	94.3	7.3	2.65	144.4	3.46
36710003	1		47.0	0.41	93.0		2.61	143.3	3.35
36710005	1		56.0	0.50	95.2	7.3	2.60	143.7	3.32
36710007	1		53.5	0.48	95.3	8.1	2.64	143.6	4.06
36710009	1		40.8	0.43	93.9		2.57	144.7	4.31
		Mean	48.90	0.446	94.34	7.47	2.614	143.94	3.700
		SD	5.99	0.042	0.96	0.37			0.454
36710021			50.6	0.43		7.2	2.75	142.9	3.43
36710023	2		46.0	0.38	94.4	7.5	2.75	142.5	3.58
36710025	2		46.2	0.47	95.9	7.3	2.68	143.9	3.70
36710029	2		46.7	0.36	97.1	8.0	2.64	144.5	3.71
		Mean	47.38	0.410	95.58	7.51	2,705	143.45	3.605
		SD	2.17	0.050	1.19		0.054		0.131
36710031	3		47.0	0.45	94.5		2.81	145.1	3.76
36710033	3			0.45	96.2	7.0	2.64	146.0	3.72
36710035	3		39.4	0.40	97.4	6.9	2.50	146.8	3.10
36710037	3		52.3	0.41	97.9	7.1	2.49	145.4	3.42
36710039	3		49.8	0.41	96.7	7.4	2.51	145.0	3.17
		Mean	49.30	0.424	96.54	6.97	2.590	145.66	3.434
		\$D	6.86	0.024	1.31	0.37	0.137	0.75	0.304
36710041	4		61.8	0.36	96.8	6.5	2.58	146.3	3.42
36710043	4		60.5	0.35	96.4	7.2	2.67	143.0	3.88
36710045	4		51.1	0.37	94.2	6.8	2,79	144.3	3.83
36710047	4		55.5	0.38	96.3	6.2	2.71	142.7	3.45
36710049	4		75.3	0.44	96.3	7.2	2.57	142.1	3.18
		Mean	60.84	0.380	96.00	6.79	2.664	143.68	3.552
		SD	9.13	0.035	1.03	0.42	0.092	1.67	0.296

STUDY NO.:

Animal Number	Group		PROT g/dl	ALB g/dl	GLO g/dl	AGR
36710001 36710003 36710005 36710007 36710009	1 1 1 1 1	Mean SD	6.1 6.2 6.1 6.6 6.3 6.26 0.21	4.1 4.2 4.0 4.1 4.4 4.16 0.15	2.0 2.0 2.1 2.5 1.9 2.10 0.23	2.1 2.1 1.9 1.6 2.3 2.00
36710021 36710023 36710025 36710029	2 2 2 2	Mean SD	6.3 6.8 6.3 6.2 6.40 0.27	4.0 4.4 4.3 4.0 4.18 0.21	2.3 2.4 2.0 2.2 2.23 0.17	1.7 1.8 2.2 1.8 1.89 0.18
36710031 36710033 36710035 36710037 36710039	3 3 3 3 3	Mean SD	6.8 6.7 6.6 6.5 6.4 6.60	4.6 4.4 4.3 4.5 4.2 4.40 0.16	2.2 2.3 2.3 2.0 2.2 2.20 0.12	2.1 1.9 1.9 2.3 1.9 2.01
36710041 36710043 36710045 36710047 36710049	4 4 4 4 4	Mean SD	6.2 6.4 6.5 6.3 5.9 6.26 0.23	4.2 4.6 4.5 4.4 4.2 4.38 0.18	2.0 1.8 2.0 1.9 1.7 1.88 0.13	2.1 2.6 2.3 2.3 2.5 2.34 0.18

4-week oral toxicity study in rats followed by a 2 week recovery period

APPENDIX 8.2 - Clinical chemistry - At the end of recovery - Individual data

STUDY NO.:

Animal Number	Group		M/I U/I	ALT U/l	AST U/l	GGT U/l	BILT mg/dl	CHOL mg/dl	TRI mg/dl	GLU mg/dl
36710012	1		202.3	34.2	59.4	0.20	0.10	70.5	47.1	115.5
36710014	1		238.1	31.0	59.3	2.40	0.10	79.6	47.5	118.5
36710016	1		202.2	32.0	63.2	0.30	0.15	87.4	42.2	122.3
36710018	1		198.1	33.2	62.8	1.70	0.14	67.5	40.1	125.1
36710020	1		240.3	29.5	62.7	1.00	0.15	72.8	36.3	116.7
		Mean	216.20	31.98	61.48	1.120	0.128	75.56	42.64	119.62
		SD	21.08	1.84	1.95	0.936	0.026	7.98	4.75	4.00
 36710052	4		255.7	30.6	58.9	1.00	0.13	102.0	29.9	128.9
36710054	4		303.6	24.6	51.9	0.90	0.34	145.2	17.2	1.24.7
36710056	4		296.1	31.1	63.2	1.70	0.24	155.7	21.7	133.5
36710058	4		329.0	52.6	74.5	0.40	0.15	117.0	19.9	151.1
36710060	4		342.8	37.0	55.7	0.80	0.13	143.9	29.0	182.3
		Mean	305.44	35.18	60.84	0.960	0.198	132.76	23.54	144.10
		SD	33.60	10.68	8.69	0.472	0.091	22.36	5.64	23.60

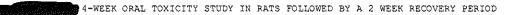
APPENDIX 8.2 - Clinical chemistry - At the end of recovery - Individual data

STUDY NO.:

Animal Number	Group		UREA mg/dl	CREA mg/dl	CL mmol/l	PHOS mg/dl	CA mmol/l	Na mmol/l	K mmol/l
36710012	1		35.8	0.30	92.7	7.9	2.70	147.5	4.01
36710014	1		47.0	0.32	93.3	8.1	2.77	147.5	4.16
36710016	1		51.0	0.37	91.9	8.1	2.80	147.0	4.45
36710018	1		39.0	0.36	93.0	8.4	2.51	146.4	4.62
36710020	1		49.8	0.39	93.7	8.2	2.65	147,7	4.15
		Mean	44.52	0.348	92.92	8.12	2.686	147.22	4.278
		SD	6.76	0.037	0.68	0.18	0.115	0.53	0.249
36710052	4		54.1	0.19	94.9	5.9	2.62	145.4	4.37
36710054	4		71.3	0.23	95.3	7.5	2.50	142.3	4.50
36710056	4		61.2	0.23	95.1	6.1	2.72	145.2	3.53
36710058	4		60.9	0.25	94.1	8.5	2.18	145.2	5.61
36710060	4		53.1	0.25	91.8	7.1	2.72	142.6	4.44
		Mean	60.12	0,230	94.24	7.00	2.548	144.14	4.490
		SD	7.29	0.024	1.44	1.09	0.225	1.55	0.740

APPENDIX 8.2 - Clinical chemistry - At the end of recovery - Individual data

STUDY NO.:


Animal Number	Group		PROT g/dl	ALB g/dl	GLO g/dl	AGR
36710012	1		6.4	3.9	2.5	1.6
36710014	1		6.4	3.9	2.5	1.6
36710016	1		6.5	4.0	2.5	1.6
36710018	1		6.6	3.7	2.9	1.3
36710020	1		6.4	3.9	2.5	1.6
		Mean	6.46	3.88	2.58	1.51
		SD	0.09	0.11	0.18	0.13
36710052	4		5.5	3.6	1.9	1.9
36710054	4		5.1	3.4	1.7	2.0
36710056	4		5.8	3.9	1.9	2.1
36710058	4		5.8	4.0	1.8	2.2
36710060	4		6.5	4.3	2.2	2.0
		Mean	5.74	3.84	1.90	2.02
		SD	0.51	0.35	0.19	0.12

STUDY NO.:

Animal Number	Group		AP U/l	ALT U/l	AST U/l	GGT U/l	BILT mg/dl	CHOL mg/dl	TRI mg/dl	GLU mg/dl
- 36710011	1		171.3	30.0	86.3	2.10	0.17	87.1	43.8	94.9
36710013	1		142.7	26.9	70.5	0.20	0.17	77.6	41.0	101.8
36710015	1		179.7	26.2	76.1	1.20	0.16	77.2	36.3	105.2
36710017	1		158.0	27.1	74.2	1.10	0.17	59.9	46.0	104.1
36710019	1		170.3	22.2	74.0	1.70	0.15	48.5	50.6	112,7
		Mean	164.40	26.48	76.22	1.260	0.164	70.06	43.54	103.74
		ŞD	14.39	2.80	5.99	0.716	0.009	15.54	5.36	6.41
36710051	4		118.0	28.4	54.8	0.70	0.09	81.5	27.8	123.4
36710053	4		165.8	28.5	55.7	2.00	0.09	73.1	27.9	147.1
36710055	4		164.7	23.2	51.9	0.30	0.10	81.2	28.4	117.4
36710057	4		135.1	27.9	54.1	1.30	0.12	77.8	37.0	120.5
36710059	4		120.1	35,8	55.0	0.30	0.12	76.8	36.8	170.5
		Mean	140.74	28.76	54.30	0.920	0.104	78.08	31.58	135.78
		SD	23.33	4.51	1.46	0.729	0.015	3.46	4.86	22.68

STUDY NO.:

Animal Number	Group		UREA mg/dl	CREA mg/dl	CL mmol/l	PHOS mg/dl	CA mmol/l	Na mmol/l	K mmol/l
36710011	1		75.8	0.65	95.8	7.0	2.77	147.7	3.26
36710013	1		70.2	0.57	94.7	7.3	2.67	148.5	3.05
36710015	1		60.3	0.56	95.1	7.5	2.63	147.9	3.18
36710017	1		73.3	0.50	94.7	7.8	2.71	148.3	3.46
36710019	1		59.5	0.48	94.7	7.0	2.67	147.2	3.66
		Mean	67.82	0.552	95.00	7.32	2.690	147.92	3.322
		SD	7.50	0.067	0.48	0.32	0.053	0.51	0.240
36710051	4		74.5	0.40	94.2	6,7	2.80	145.6	3.85
36710053	4		63.7	0.37	92.4	6.9	2.79	144.5	3.49
36710055	4		64.0	0.39	94.0	6.6	2.80	145.7	3.81
36710057	4		50.0	0.31	93.9	6.8	2.82	145.4	3.49
36710059	4		53.1	0.32	94.9	7.0	2.46	146.2	3.97
		Mean	61.06	0.358	93.88	6.80	2.734	145.48	3.722
		SD	9.77	0.041	0.91	0.18	0.154	0.62	0.220

STUDY NO.:

Animal Number	Group		PROT g/dl	ALB g/dl	g/dl	AGR	
36710011	1		6.6	4.3	2.3	1.9	
36710013	1		6.2	4.2	2.0	2.1	
36710015	1		6.2	4.1	2.1	2.0	
36710017	1		5.9	4.1	1.8	2.3	
36710019	1		6.1	3.9	2.2	1.8	
		Mean	6.20	4.12	2.08	1.99	
		SD	0.25	0.15	0.19	0.20	
36710051	4		6.5	4.7	1.8	2.6	
36710053	4		6.1	4.4	1.7	2.6	
36710055	4		6.9	4.8	2.1	2.3	
36710057	4		6.5	4.6	1.9	2.4	
36710059	4		6.0	4.0	2.0	2.0	
		Mean	6.40	4.50	1.90	2.38	
		SD	0.36	0.32	0.16	0.25	

APPENDIX 9.1 - Urinalysis - At the end of treatment - Individual data

STUDY NO.:

Animal Number	Group	VOL ml	SG
36710002 36710004 36710006 36710008 36710010	1 1 1 1 1	6.0 5.0 5.5 6.0 6.5 Mean 5.80 SD 0.57	1.015 1.015 1.015 1.025 1.020 1.0180 0.0045
36710022 36710024 36710026 36710028 36710030	2 2 2 2 2 2	5.0 7.0 7.0 7.5 6.5 Mean 6.60 SD 0.96	1.020 1.020 1.030 1.020 1.025 1.0230 0.0045
36710032 36710034 36710036 36710038 36710040	3 3 3 3 3	6.0 8.0 8.5 6.0 5.5 Mean 6.80 SD 1.35	1.010 1.005 1.020 1.010 1.015 1.0120 0.0057
36710042 36710044 36710046 36710048 36710050	4 4 4 4 4	8.0 7.5 7.0 6.0 6.5 Mean 7.00 SD 0.79	1.015 1.020 1.010 1.015 1.015 1.0150 0.0035

APPENDIX 9.1 - Urinalysis - At the end of treatment - Individual data

STUDY NO.:

Animal Number	Group	APP	RED	PH	GLU mg/dl	PRO mg/dl	BLD mg/dl	KET mg/dl	BIL mg/dl
36710002	1	0	0	7.0	0	30	0.00	150	0.0
36710004	1	0	0	6.5	Ō	30	0.00	80	0.0
36710006	1	0	0	7.5	50	100	0.00	150	2.0
36710008	1	0	0	6.5	Ō	30	0.00	150	0.0
36710010	1	0	0	7.0	0	30	0.00	40	0.0
36710022	2	0	0	6.0	0	 15	0.00	0	0.0
36710024	2	0	0	7.0	0	1.5	0.00	ō	0.0
36710026	2	0	0	6.5	0	15	0.06	o o	0.0
36710028	2	0	0	6.5	0	30	0.00	0	0.0
36710030	2	0	0	6.5	0	15	0.00	0	0.0
36710032	3	0	0	7.5	0	30	0.00	15	0.0
36710034	3	0	0	7.5	Ō	30	0.00	15	0.0
36710036	3	0	0	7.0	0	30	0.00	15	0.0
36710038	3	0	0	7.5	0	100	0.00	0	0.0
36710040	3	0	0	7.5	0	15	0.00	40	0.0
36710042	4	0	0	7.0	0	15	0.00	0	0.0
36710044	4	0	0	6.5	ō	30	0.00	40	0.0
36710046	4	0	0	6.5	0	15	0.06	15	0.0
36710048	4	0	0	7.0	Ō	30	0.00	15	0.0
36710050	4	0	0	6.5	0	30	0.00	15	0.0

4-week oral toxicity study in rats followed by a 2 week recovery period

APPENDIX 9.1 - Urinalysis - At the end of treatment - Individual data

STUDY NO.:

Animal Number	Group	URO mg/dl	
36710002 36710004 36710006 36710008 36710010	1 1 1 1 1	1.0 1.0 4.0 1.0	
36710022 36710024 36710026 36710028 36710030	2 2 2 2 2 2	1.0 1.0 1.0 1.0 1.0	
36710032 36710034 36710036 36710038 36710040	3 3 3 3 3	1.0 1.0 1.0 1.0 1.0	
36710042 36710044 36710046 36710048 36710050	4 4 4 4 4	1.0 1.0 1.0 1.0 1.0	

APPENDIX 9.1 - Urinalysis - At the end of treatment - Individual data

STUDY NO.:

Animal Number	Group	EPI	LEU	ERY	CRY	SPE	ABN	
Number								
36710002	1	1	0	0	1	1	0	
36710004	1	1	0	0	1	1	0	
36710006	1	1	0	0	0	0	0	
36710008	1	1	1	0	0	1	0	
36710010	1	1	0	0	1	l	U	
36710022	2	0	0	0	0	0	0	
36710024	2	1	0	0	0	0	0	
36710026	2	1	0	0	0	0	0	
36710028	2	2	0	0	0	0	0	
36710030	2	1	0	0	0	0 	. 0	
36710032	3	1	0	0	0	0	0	
36710034	3	1	0	0	0	0	0	
36710036	3	1	0	0	1	1	0	
36710038	3	1	0	0	1	0	Q	
36710040	3	1	0	0	1	0	. 0	
36710042	4	1	0	0	2	1	0	
36710044	4	1	0	0	1	1	0	
36710046	4	1	0	0	1	1	0	
36710048	4	1	0	0	1	1	0	
36710050	4	1	0	0	0	0	0	

APPENDIX 9.1 - Urinalysis - At the end of treatment - Individual data

STUDY NO.:

Animal Number	Group		VOL ml	SG
36710001	1		6.5	1.020
36710003	1 1		5.0	1.010
36710005	1		6.5 7.5	1.015 1.015
36710007 36710009	1		6.0	1.015
36/10003	1	Mean		1.015
		SD	0.91	0.0035
		20	0.91	0.0035
36710021	2		9.0	1.015
36710023			7.5	1.020
36710025	2 2 2		8.0	1.015
36710029	2		4.5	1.020
		Mean		1.0175
		SD	1.94	0.0029
36710031	3		4.5	1.030
36710031	3		2.0	1.015
36710035	3 3		5.5	1.020
36710033	3		5.0	1.020
36710039	3		7.0	1.025
30.10033	-	Mean		1.0220
		SD	1.82	0.0057
36710041	4		6.0	1.030
36710041	4		5.5	1.015
36710045	4		1.5	1.030
36710043	4		3.5	1.030
36710049	4		4.5	1.030
20,10042	74	Mean		1.0270
		SD	1.79	0.0067

APPENDIX 9.1 - Urinalysis - At the end of treatment - Individual data

STUDY NO.:

Animal Number	Group	APP	RED	PH	GLU mg/dl	PRO mg/dl	BLD mg/dl	KET mg/dl	BIL mg/dl
36710001	1	0	0	6.5	0	0	0.00	0	0.0
36710003	1	0	0	7.0	0	15	0.00	0	0.0
36710005	1	0	0	7.0	0	15	0.00	0	0.0
36710007	1	0	0	6.5	0	0	0.00	0	0.0
36710009	1	0	0	7.0	0	15	0.00	0	0.0
 36710021	2	0	0	7.0	0	15	0.00	0	0.0
36710023	2	0	0	7.0	0	0	0.00	0	0.0
36710025	2	0	0	7.0	0	0	0.00	0	0.0
36710029	2	0	0	6.5	0	30	0.00	0	0.0
 36710031	3	0	0	6.5	50	 15	0.00	0	0.0
36710033	3	0	0	7.0	0	15	0.00	0	0.0
36710035	3	0	0	7.0	0	15	0.00	0	0.0
36710037	3	0	0	6.5	0	15	0.00	0	0.0
36710039	3	0	0	6.5	0	0	0.00	0	0.0
36710041	4	0	0	6.5	0	0	0.00	0	0.0
36710043	4	0	0	7.0	0	15	0.00	0	0.0
36710045	4	0	0	6.5	0	30	0.00	15	0.0
36710047	4	0	0	6.5	0	0	0.00	0	0.0
36710049	4	0	0	6.5	0	15	0.00	Ō	0.0

APPENDIX 9.1 - Urinalysis - At the end of treatment - Individual data

STUDY NO.:

Animal Number	Group	URO mg/dl	
36710001 36710003 36710005 36710007 36710009	1 1 1 1	1.0 1.0 1.0 1.0	
36710021 36710023 36710025 36710029	2 2 2 2 2	1.0 1.0 1.0 1.0	
36710031 36710033 36710035 36710037 36710039	3 3 3 3 3	2.0 1.0 1.0 1.0 1.0	
36710041 36710043 36710045 36710047 36710049	4 4 4 4 4	1.0 1.0 2.0 1.0	

APPENDIX 9.1 - Urinalysis - At the end of treatment - Individual data

STUDY NO.:

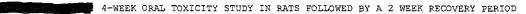
Animal Number	Group	EPI	LEU	ERY	CRY	SPE	ABN	
36710001	1	1	0	0	1	0	0	
36710003	1	1	0	0	1	0	0	
36710005	1	1	0	0	1	0	0	
36710007	1	1	0	0	0	0	0	
36710009	1	1	0	0	1	0	0	
36710021	2	1	o	 0	0		0	
36710023	2	1	0	0	1	0	0	
36710025	2	1	0	0	1	0	0	
36710029	2	1	0	0	1	0	0	
36710031	3	1	0	0	0	0	° 	
36710033	3	1	0	0	1	0	0	
36710035	3	1	0	0	1	0	0	
36710037	3	1	0	0	0	0	0	
36710039	3	1	0	0	0	0	0	
36710041	4	0	_ _		0	0	0	
36710043	4	0	0	0	0	0	0	
36710045	4	0	0	0	1	0	0	
36710047	4	1	0	0	0	0	0	
36710049	4	0	Ω	Ô	Ω	n	0	

APPENDIX 9.2 - Urinalysis - At the end of recovery - Individual data

STUDY NO.:

Animal Number	Group		VOL ml	SG
36710012	1		5.0	1.010
36710014	1		10.0	1.010
36710016	1		13,5	1.010
36710018	1		9.0	1.010
36710020	1		5.5	1.005
		Mean	8.60	1.0090
		SD	3.49	0.0022
36710052	4		4.0	1.025
36710054	4		9.5	1.010
36710056	4		4.0	1.025
36710058	4		7.0	1.020
36710060	4		11.0	1.015
	-	Mean	7.10	1.0190
		SD	3.17	0.0065

APPENDIX 9.2 - Urinalysis - At the end of recovery - Individual data


STUDY NO.:

Animal Number	Group	APP	RED	PH	GLU mg/dl	PRO mg/dl	BLD mg/dl	KET mg/dl	BIL mg/dl
36710012	 1	1	0	8.0	0	30	0.00	15	0.0
36710014	1	1	0	7.5	0	30	0.00	0	0.0
36710016	1	1	0	7.5	0	100	0.00	0	0.0
36710018	1	1	0	7.5	0	100	0.00	0	0.0
36710020	1	1	0	7.5	0	30	0.00	0	0.0
 36710052	4	0	0	6.5	 0	- 15	0.00	0	0.0
36710054	4	1	0	7.5	0	0	0.00	0	0.0
36710056	4	0	0	7.0	0	30	0.00	0	0.0
36710058	4	1	0	6.5	0	30	0.00	0	0.0
36710060	4	0	0	7.0	0	15	0.00	0	0.0

APPENDIX 9.2 - Urinalysis - At the end of recovery - Individual data

STUDY NO.:

Animal Number	Group	URO mg/dl	
36710012	1	1.0	
36710014	1	1.0	
36710016	1	1.0	
36710018	1	1.0	
36710020	1	1.0	
36710052	4	1.0	**************************************
36710054	4	1.0	
36710056	4	1.0	
36710058	4	1.0	
36710060	4	1.0	

APPENDIX 9.2 - Urinalysis - At the end of recovery - Individual data

STUDY NO.:

Animal Number	Group	EPI	LEU	ERY	CRY	SPE	лам	
36710012	1	1	1	0	2	1	0	
36710014	1	0	. 0	0	1	1	0	
36710016	1	2	0	0	1	1	0	
36710018	1	1	1	0	1	1	0	
36710020	1	1	0	0	1	1	0	
36710052	4	2	1	0	 1	0	0	
36710054	4	1	1	0	0	1	0	
36710056	4	1	1	0	0	0	0	
36710058	4	1	1	0	1	0	0	
36710060	4	1	0	0	1	1	0	

APPENDIX 9.2 - Urinalysis - At the end of recovery - Individual data

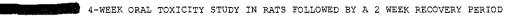
STUDY NO.:

Animal Number	Group		VOL	SG
36710011	 1		2.0	1.030
36710013	1		4.0	1.025
36710015	1		6.0	1.010
36710017	1		2.0	1.020
36710019	1		3.0	1.020
		Mean	3.40	1.0210
		SD	1.67	0.0074
36710051	4		4.5	1.025
36710053	4		9.0	1.020
36710055	4		5.0	1.030
36710057	4		3.0	1.030
36710059	4		6.0	1.030
		Mean	5.50	1.0270
			2,24	0.0045

APPENDIX 9.2 - Urinalysis - At the end of recovery - Individual data

STUDY NO.:

Animal Number	Group	APP	RED	PH	GLU mg/dl	PRO mg/dl	BLD mg/dl	KET mg/dl	BIL mg/dl
36710011	1	0	0	6.5	0	30	0.00	0	0.0
36710013	1	0	Q	7.0	0	15	0.00	0	0.0
36710015	1	0	0	7.5	0	0	0.00	0	0.0
36710017	1	0	0	7.0	0	30	0.00	0	0.5
36710019	1	0	0	7.0	0	30	0.00	0	0.0
36710051	4	0	0	6.5	0	0	0.00	0	0.0
36710053	4	0	0	7.0	0	0	0.00	0	0.0
36710055	4	0	0	6.5	0	15	0.00	0	0.0
36710057	4	0	0	6.5	0	0	0.00	0	0.0
36710059	4	0	0	6.5	0	0	0.00	0	0.0



APPENDIX 9.2 - Urinalysis - At the end of recovery - Individual data

STUDY NO.:

Animal Number	Group	URO mg/dl	
36710011	 1	2.0	
36710013	1	1.0	
36710015	1	1.0	
36710017	1	2.0	
36710019	1	1.0	
36710051	4	1.0	
36710053	4	1.0	
36710055	4	1.0	
36710057	4	1.0	
36710059	4	1.0	

APPENDIX 9.2 - Urinalysis - At the end of recovery - Individual data

STUDY NO.:

Animal Number	Group	EPI	LEU	ERY	CRY	SPE	ABN	
36710011 36710013 36710015 36710017 36710019	1 1 1 1	1 1 1 2	0 0 1 1	0 0 0	1 0 1 1	0 0 0 0	0 0 0 0	
36710019 36710051 36710053 36710055 36710057 36710059	4 4 4 4 4 4	2 1 2 1 2	1 1 1 1 1	0 0 0 0 0	0 1 1 1	0 0 0 0	0 0 0 0 0	

APPENDIX 10.1 - Absolute organ weights (g) - Final sacrifice - Individual data

STUDY NO.:

Animal	Group	Terminal		Brain		Heart		Liver
Number		B.W. (g)	Adrenals	Ep	ididymides		Kidneys	
36710002	1	335.6	0.053	1.78	1.056	1.24	2.08	8.83
36710004	1	361.2	0.043	1.77	1.044	1.20	2.22	10.10
36710006	1	348.9	0.064	1.77	1.127	1.27	2.23	9.76
36710008	1,	340.7	0.042	1.84	1.123	1.34	2.03	8.89
36710010	1	348.3	0.041	1.88	1.099	1.12	2.17	8.67
	Mean	346.94	0.0486	1.806	1.0898	1.234	2.145	9.251
	SD	9.70	0.0099	0.050	0.0381	0.080	0.087	0.638
	(n)	(5)	(5)	(5)	(5)	(5)	(5)	(5)
36710022	2	339.9	0.049	1.84	1.003	1.12	2.28	10.66
36710024	2	317.6	0.046	1.73	1.088	1.11	2.04	9.73
36710026	2	320.4	0.054	1.78	1.107	1.17	2.09	9.58
36710028	2	340.6	0.050	1.82	1.098	1.29	2.13	10.87
36710030	2	350.9	0.050	1.87	1.240	1.16	2.15	11.48
	Mean	333.88	0.0498	1.806	1.1072	1,168	2.140	10.462
	SD	14.30	0.0029	0.054	0.0851	0.070	0.091	0.799
	(n)	(5)	(5)	(5)	(5)	(5)	(5)	(5)
36710032	3	343.8	0.038	1.84	1.002	1.17	2.23	14.57
36710034	3	346.7	0.049	1.80	1.094	1.33	2.50	14.31
36710036	3	354.8	0.071	1.84	1.237	1.25	2.59	14.94
36710038	3	329.1	0.044	1.80	1.056	1.17	2.24	12.83
36710040	3	331.5	0.048	1.84	1.099	1.24	2.24	14.70
	Mean	341.18	0.0500	1.824	1.0976	1.233	2.358	14.270
	SD	10.75	0.0125	0.023	0.0871	0.068	0.173	0.837
	(n)	(5)	(5)	(5)	(5)	(5)	(5)	(5)
36710042	4	246.7	0.041	1.79	1.156	0.89	2.01	15.13
36710044	4	291.8	0.046	1.83	1.053	0.93	2.08	18.27
36710046	4	278.7	0.041	1.62	0.997	0.87	2.14	17.27
36710048	4	307.7	0.047	1.74	1.042	1.08	2.41	18.15
36710050	4	260.6	0.039	1.82	1.093	0.83	1.80	16.15
	Mean	277.10	0.0428	1.761	1.0682	0.917	2.087	16.995
	SD	24.25	0.0035	0.085	0.0598	0.096	0.220	1.345
	(n)	(5)	(5)	(5)	(5)	(5)	(5)	(5)

APPENDIX 10.1 - Absolute organ weights (g) - Final sacrifice - Individual data

STUDY NO.:

Group	Terminal		Testes		Thyroid	
•	B.W. (g)	Spleen		Thymus		
1	335.6	0.901	4.084	0.493	0.028	
1	361.2	0.865	3.572	0.553	0.022	
1	348.9	1.004	3.815	0.490	0.027	
1	340.7	0.818	3.626	0.625	0.025	
1	348.3	0.849	3.592	0.465	0.023	
Mean	346.94	0.8874			0.0250	
SD	9.70		0.2163	0.0645	0.0025	
(n)	(5)	(5)	(5)	(5)	(5)	
2	339.9	0.900	3.676	0.654	0.027	
2	317.6	0.699	3.608	0.542	0.029	
2	320.4	0.686	3.784	0.431	0.026	
2	340,6	0.788	3.925	0.663	0.026	
2	350.9	0.933		0.464	0.021	
Mean	333.88	0.8012	3.7782	0.5508	0.0258	
SD	14.30	0.1129	0.1372	0.1063	0.0029	
(n)	(5)	(5)	(5)	(5)	(5)	
3	343.8	0.718	3.470	0.552	0.027	
3	346.7	0.889	3.B27	0.494	0.027	
3	354.8	0.960	3.936	0.636	0.027	
3	329.1	0.748	3.967	0.482	0.026	
3	331.5	0.730		0.566	0.027	
Mean	341.18	0.8090	3.7664	0.5460	0.0268	
SD	10.75	0,1089	0.2113	0.0619	0.0004	
(n)	(5)	(5)	(5)	(5)	(5)	
4	246.7	0.436	3.784	0.186	0.024	
4	291.8	0.707	3.676	0.308	0.026	
4	278,7	0.500	3.618	0.399	0.023	
4	307.7			0.418	0.029	
4	260.6	0.485	3.314	0.237	0.024	
Mean	277.10	0.5482	3.6210	0.3096	0.0252	
SD	24.25	0,1099	0.1819	0.1004	0.0024	
(n)		(5)	(5)	(5)	(5)	
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 335.6 1 361.2 1 348.9 1 340.7 1 348.3 Mean 346.94 SD 9.70 (n) (5) 2 339.9 2 317.6 2 320.4 2 340.6 2 350.9 Mean 333.88 SD 14.30 (n) (5) 3 343.8 3 346.7 3 354.8 3 329.1 3 331.5 Mean 341.18 SD 10.75 (n) (5) 4 246.7 4 291.8 4 278.7 4 307.7 4 260.6 Mean 277.10 SD 24.25	1 335.6 0.901 1 361.2 0.865 1 348.9 1.004 1 340.7 0.818 1 348.3 0.849 Mean 346.94 0.8874 SD 9.70 0.0717 (n) (5) (5) 2 339.9 0.900 2 317.6 0.699 2 320.4 0.686 2 340.6 0.788 2 350.9 0.933 Mean 333.88 0.8012 SD 14.30 0.1129 (n) (5) (5) 3 343.8 0.8012 SD 14.30 0.1129 (n) (5) (5) 3 343.8 0.718 3 346.7 0.889 3 354.8 0.960 3 329.1 0.748 3 331.5 0.730 Mean 341.18 0.8090 SD 10.75 0.1089 (n) (5) (5) 4 246.7 0.436 4 291.8 0.707 4 278.7 0.500 4 278.7 0.500 4 278.7 0.500 4 278.7 0.500 4 278.7 0.500 4 278.7 0.500 4 278.7 0.500 4 278.7 0.500 4 278.7 0.500 4 278.7 0.500 4 278.7 0.500 4 278.7 0.500 4 278.7 0.500 4 278.7 0.500 4 278.7 0.500 4 278.7 0.500 5 Mean 277.10 0.5482 SD 24.25 0.1099	1 335.6 0.901 4.084 1 361.2 0.865 3.572 1 348.9 1.004 3.815 1 340.7 0.818 3.626 1 348.3 0.849 3.592 Mean 346.94 0.8874 3.7378 SD 9.70 0.0717 0.2163 (n) (5) (5) (5) 2 339.9 0.900 3.676 2 317.6 0.699 3.608 2 320.4 0.666 3.784 2 340.6 0.788 3.925 2 350.9 0.933 3.898 Mean 333.88 0.8012 3.7782 SD 14.30 0.1129 0.1372 (n) (5) (5) (5) 3 343.8 0.8012 3.7782 SD 14.30 0.1129 0.1372 (n) (5) (5) (5) 3 343.8 0.718 3.470 3 346.7 0.889 3.827 3 354.8 0.960 3.936 3 329.1 0.748 3.967 3 331.5 0.730 3.632 Mean 341.18 0.8090 3.7664 SD 10.75 0.1089 0.2113 (n) (5) (5) (5) 4 246.7 0.436 3.784 4 291.8 0.707 3.676 4 278.7 0.500 3.618 4 278.7 0.500 3.618 4 278.7 0.500 3.618 4 278.7 0.500 3.618 4 278.7 0.500 3.618 4 278.7 0.500 3.618 4 278.7 0.500 3.618 4 278.7 0.500 3.618 4 278.7 0.500 3.618 4 278.7 0.500 3.618 4 278.7 0.500 3.618 4 278.7 0.500 3.618 4 278.7 0.500 3.618 4 278.7 0.500 3.618 4 278.7 0.500 3.618 4 278.7 0.500 3.618 4 278.7 0.500 3.618 4 277.10 0.5482 3.6210 SD 24.25 0.1099 0.1819	1 335.6 0.901 4.084 0.493 1 361.2 0.865 3.572 0.553 1 348.9 1.004 3.815 0.490 1 340.7 0.818 3.626 0.625 1 348.3 0.849 3.592 0.465 Mean 346.94 0.8874 3.7378 0.5252 SD 9.70 0.0717 0.2163 0.0645 (m) (5) (5) (5) (5) (5) 2 339.9 0.900 3.676 0.654 2 317.6 0.699 3.608 0.542 2 320.4 0.686 3.784 0.431 2 340.6 0.788 3.925 0.663 2 350.9 0.933 3.898 0.464 Mean 333.88 0.8012 3.7782 0.5508 SD 14.30 0.1129 0.1372 0.1063 (n) (5) (5) (5) (5) (5) 3 343.8 0.718 3.470 0.552 3 346.7 0.889 3.827 0.494 3 354.8 0.960 3.936 0.636 3 329.1 0.748 3.967 0.494 3 354.8 0.960 3.936 0.636 Mean 341.18 0.8090 3.7664 0.5460 SD 10.75 0.1089 0.2113 0.0619 (n) (5) (5) (5) (5) (5)	1 335.6 0.901 4.084 0.493 0.028 1 361.2 0.865 3.572 0.553 0.022 1 348.9 1.004 3.815 0.490 0.027 1 348.3 0.849 3.592 0.465 0.023 Mean 346.94 0.8874 3.7378 0.5252 0.0250 SD 9.70 0.0717 0.2163 0.0645 0.0025 (n) (5) (5) (5) (5) (5) (5) 2 339.9 0.900 3.676 0.654 0.027 2 317.6 0.699 3.608 0.542 0.029 2 320.4 0.686 3.784 0.431 0.026 2 340.6 0.788 3.925 0.663 0.026 2 340.6 0.788 3.925 0.663 0.026 2 350.9 0.933 3.898 0.464 0.021 Mean 333.88 0.8012 3.7782 0.5508 0.0258 SD 14.30 0.1129 0.1372 0.1063 0.0029 (n) (5) (5) (5) (5) (5) (5) (5) 3 343.8 0.718 3.470 0.552 0.027 3 346.7 0.889 3.827 0.494 0.027 3 346.7 0.889 3.827 0.494 0.027 3 346.7 0.889 3.827 0.494 0.027 3 346.7 0.889 3.827 0.494 0.027 3 346.7 0.889 3.827 0.494 0.027 3 329.1 0.748 3.967 0.482 0.026 3 331.5 0.730 3.632 0.566 0.027 4 246.7 0.899 0.213 0.0619 0.0026 SD 10.75 0.1089 0.2113 0.0619 0.0004 (n) (5) (5) (5) (5) (5) (5) (5)

4-week oral toxicity study in rats followed by a 2 week recovery period

APPENDIX 10.1 - Absolute organ weights (g) - Final sacrifice - Individual data

STUDY NO.:

Animal	Group	Terminal		Brain		Kidneys		Ovaries
Number	•	B.W. (g)	Adrenals		Heart	-	Liver	
36710001	1	232.4	0.065	1.72	0.88	1.58	6.02	0.150
36710003	1	227.7	0.064	1.61	0.90	1.46	6.38	0.125
36710005	1	227.0	0.067	1.60	0.79	1.30	5.96	0.129
36710007	1	213.1	0.064	1.74	0.95	1.42	5.68	0.126
36710009	1	207.6	0.064	1.67	0.78	1.31	5.29	0.107
	Mean	221.56	0.0648	1.669	0.858	1.414	5.865	0.1274
	SD	10.62	0.0013	0.064	0.076	0.112	0.407	0.0153
	(n)	(5)	(5)	(5)	(5)	(5)	(5)	(5)
36710021	2	212.2	0.054	1.68	0.76	1.37	5.49	0.116
36710023	2	228.7	0.061	1.63	0.98	1.48	6.40	0.134
36710025	2	215.6	0.059	1.67	0.76	1.22	5.72	0.090
36710029	2	227.7	0.062	1.60	0.83	1.44	6.16	0.116
	Mean	221.05	0.0590	1.642	0.832	1.377	5.942	0.1140
	SD	8.38	0.0036	0.037	0.107	0.116	0.410	0.0181
	(n)	(4)	(4)	(4)	(4)	(4)	(4)	(4)
36710031	3	231.7	0.058	1.63	0.79	1.52	6.84	0.112
36710033	3	207.3	0.079	1.71	0.83	1.41	6.80	0.139
36710035	3	213.8	0.079	1.73	0.86	1.45	6.69	0.111
36710037	3	203.2	0.064	1.67	0.87	1.38	6.16	0.131
36710039	3	208.1	0.056	1.65	0.83	1.40	6.10	0.100
	Mean	212.82	0.0672	1.679	0.835	1.432	6.518	0.1186
	SD	11.21	0.0112	0.042	0.032	0.058	0.359	0.0159
	(n)	(5)	(5)	(5)	(5)	(5)	(5)	(5)
36710041	4	187.1	0.041	1.55	0.64	1.34	8.47	0.103
36710043	4	191.3	0.057	1.62	0.72	1.57	8.04	0.118
36710045	4	191.1	0.062	1.57	0.73	1.40	9.02	0.132
36710047	4	206.7	0.059	1.71	0.80	1.44	8.95	0.110
36710049	4	204.5	0.056	1.65	0.91	1.34	8.22	0.121
	Mean	196.14	0.0550	1.620	0.759	1.416	8.540	0.1168
	SD	8.83	0.0082	0.062	0.102	0.097	0.438	0.0110
	(n)	(5)	(5)	(5)	(5)	(5)	(5)	(5)

APPENDIX 10.1 - Absolute organ weights (g) - Final sacrifice - Individual data

STUDY NO.:

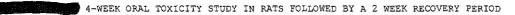
Animal	Group	Terminal		Thymus		
Number	_	B.W. (g)	Spleen		Thyroid	
36710001	1	232.4	0.780	0.436	0.014	
36710003	1	227.7	0.654	0.359	0.017	
36710005	1	227.0	0.587	0.417	0.015	
36710007	1.	213.1	0.785	0.356	0.010	
36710009	1	207.6	0.683	0.309	0.017	
	Mean	221.56	0.6978	0.3754	0.0146	
	SD	10.62	0.0848	0.0511	0.0029	
	(n)	(5)	(5)	(5)	(5)	
36710021	2	212.2	0.534	0.422	0.015	
36710023	2	228.7	0.705	0.377	0.014	
36710025	2	215.6	0.468	0.459	0.017	
36710029	2	227.7	0.716	0.305	0.018	
	Mean	221.05	0.6058	0.3908	0.0160	
	SD	8.38	0.1240	0.0663	0.0018	
	(n)	(4)	(4)	(4)	(4)	
36710031	3	231.7	0.559	0.393	0.015	
36710033	3	207.3	0.489	0.336	0.012	
36710035	3	213.8	0.497	0.390	0.016	
36710037	3	203.2	0.601	0.512	0.017	
36710039	3	208.1	0.533	0.407	0.014	
	Mean	212.82	0.5358	0.4076	0.0148	
	SD	11.21	0.0461	0.0643	0.0019	
	(n)	(5)	(5)	(5)	(5)	
36710041	4	187.1	0.380	0.323	0.016	
36710043	4	191.3	0.456	0.316	0.016	
36710045	4	191.1	0.426	0.350	0.013	
36710047	4	206.7	0.463	0.290	0.015	
36710049	4	204.5	0.512	0.326	0.014	
	Mean	196.14	0.4474	0.3210	0.0148	
	SD	8.83	0.0487	0.0215	0.0013	
	(n)	(5)	(5)	(5)	(5)	

APPENDIX 10.2 - Absolute organ weights (g) - Recovery sacrifice - Individual data

STUDY NO.:

MALES

Animal	Group	Terminal		Brain		Heart		Liver
Number		B.W. (g)	Adrenals	Ep	ididymides		Kidneys	
36710012	1	378.3	0.065	1.75	1.395	1.24	2.28	9.59
36710014	1	349.5	0.044	1.76	1.130	1.17	2.00	8.38
36710016	1	382.3	0.052	1.84	1.217	1.29	2.39	10.57
36710018	1	340.8	0.044	1.80	1.124	1.20	1.97	8.33
36710020	1.	372.4	0.042	1.72	1.129	1.18	2.13	9.08
	Mean	364.66	0.0494	1.773	1.1990	1.217	2.152	9.188
	SD	18.41	0.0095	0.045	0.1162	0.048	0.178	0.931
	(n)	(5)	(5)	(5)	(5)	(5)	(5)	(5)
36710052	4	281.6	0.043	1.76	1.069	0.94	2.16	17.48
36710054	4	231.2	0.032	1.58	0.667	0.70	1.65	14.73
36710056	4	252.6	0.051	1.69	1.090	0.81	2.02	16.94
36710058	4	298.9	0.059	1.70	1,058	1.02	2.13	18.06
36710060	4	303.7	0.043	1.58	1.028	1.02	2.47	19.47
	Mean	273.60	0.0456	1.661	0.9824	0.897	2.089	17.336
	SD	31.02	0.0101	0.077	0.1777	0.139	0.295	1.733
	(n)	(5)	(5)	(5)	(5)	(5)	(5)	(5)


4-week oral toxicity study in rats followed by a 2 week recovery period

APPENDIX 10.2 - Absolute organ weights (g) - Recovery sacrifice - Individual data

STUDY NO.:

MALES

Animal	Group	Terminal		Testes		Thyroid	
Number		B.W. (g)	Spleen		Thymus		
36710012	1	378.3	0.990	3.743	0.476	0.021	
36710014	1	349.5	0.753	3.598	0.433	0.017	
36710016	1	382.3	0.990	3.621	0.470	0.025	
36710018	1	340.8	0.785	3.939	0.553	0.019	
36710020	1	372.4	0.801	3.641	0.443	0.017	
	Mean	364.66	0.8638	3.7084	0.4750	0.0198	
	SD	18.41	0.1165	0.1403	0.0472	0.0033	
	(n)	(5)	(5)	(5)	(5)	(5)	
36710052	4	281.6	0.575	3.368	0.346	0.021	
36710054	4	231.2	0.529	2.939	0.086	0.017	
36710056	4	252.6	0.543	3.649	0.315	0.030	
36710058	4	298.9	0.670	3.479	0.492	0.016	
36710060	4	303.7	0.613	3.692	0.334	0.026	
	Mean	273.60	0.5860	3.4254	0.3146	0.0220	
	SD	31.02	0.0570	0.3016	0.1459	0.0060	
	(n)	(5)	(5)	(5)	(5)	(5)	

APPENDIX 10.2 - Absolute organ weights (g) - Recovery sacrifice - Individual data

STUDY NO.:

Animal	Group	Terminal		Brain		Kidneys		Ovaries
Number		B.W. (g)	Adrenals		Heart	-	Liver	
36710011	1	233.5	0.059	1.69	0.79	1.35	5.61	0.118
36710013	1	215.1	0.050	1.69	0.76	1.35	5.43	0.122
36710015	1	219.2	0.069	1.72	0.86	1.38	5.15	0.106
36710017	1	222.4	0.052	1.68	0.82	1.40	5.43	0.115
36710019	1	222.4	0.046	1.53	0.81	1.31	5.45	0.120
	Mean	222.52	0.0552	1.660	0.808	1.359	5.413	0.1162
	SD	6.83	0.0090	0.074	0.037	0.034	0.167	0.0063
	(n)	(5)	(5)	(5)	(5)	(5)	(5)	(5)
36710051	4	201.4	0.052	1.73	0.77	1.28	8.51	0.097
36710053	4	191.3	0.044	1.60	0.68	1,44	8.61	0.084
36710055	4	197.6	0.055	1.67	0.74	1.38	8.40	0.121
36710057	4	213.2	0.056	1.58	0.74	1.40	8.27	0.101
36710059	4	209.8	0.051	1.64	0.74	1.50	8.30	0.120
	Mean	202.66	0.0516	1.642	0.734	1.399	8.420	0.1046
	SD	8.92	0.0047	0.059	0.032	0.082	0.144	0.0158
	(n)	(5)	(5)	(5)	(5)	(5)	(5)	(5)

APPENDIX 10.2 - Absolute organ weights (g) - Recovery sacrifice - Individual data

STUDY NO.:

Animal	Group	Terminal		Thymus		
Number	-	B.W. (g)	Spleen		Thyroid	
36710011	1	233.5	0.689	0.616	0.025	
36710013	1	215.1	0.634	0.330	0.011	
36710015	1	219.2	0.571	0.322	0.019	
36710017	1	222.4	0.634	0.327	0.015	
36710019	1	222.4	0.511	0.354	0.021	
	Mean	222.52	0.6078	0.3898	0.0182	
	SD	6.83	0.0684	0.1270	0.0054	
	(n)	(5)	(5)	(5)	(5)	
36710051	4	201.4	0.515	0.336	0.017	
36710053	4	191.3	0.510	0.308	0.016	
36710055	4	197.6	0.549	0.286	0.026	
36710057	4	213.2	0.506	0.363	0.015	
36710059	4	209.8	0.559	0.398	0.024	
	Mean	202.66	0.5278	0.3382	0.0196	
	SD	8.92	0.0244	0.0443	0.0050	
	(n)	(5)	(5)	(5)	(5)	

APPENDIX 11.1 - Relative organ weights° - Final sacrifice - Individual data

STUDY NO.:

MALES

Animal	Group	Terminal		Brain		Heart		Liver
Number		B.W. (g)	Adrenals	Ep	ididymides		Kidneys	
36710002	1	335.6	0.016	0.53	0.315	0.37	0.62	2.63
36710004	1	361.2	0.012	0.49	0.289	0.33	0.61	2.80
36710006	1	348.9	0.018	0.51	0.323	0.37	0.64	2.80
36710008	1	340.7	0.012	0.54	0.330	0.39	0.60	2.61
36710010	1	348.3	0.012	0.54	0.316	0.32	0.62	2.49
	Mean	346.94	0.0140	0.521	0.3144	0.356	0.618	2.665
	SD	9.70	0.0029	0.022	0.0154	0.028	0.016	0.132
	(n)	(5)	(5)	(5)	(5)	(5)	(5)	(5)
36710022	2	339.9	0.014	0.54	0.295	0.33	0.67	3.13
36710024	2	317.6	0.014	0.54	0.343	0.35	0.64	3.06
36710026	2	320.4	0.017	0.55	0.346	0.37	0.65	2.99
36710028	2	340.6	0.015	0.53	0.322	0.38	0.62	3.19
36710030	2	350.9	0.014	0.53	0.353	0.33	0.61	3.27
	Mean	333.88	0.0149	0.541	0.3318	0.350	0.641	3.130
	SD	14.30	0.0011	0.009	0.0235	0.022	0.023	0.109
	(n)	(5)	(5)	(5)	(5)	(5)	(5)	(5)
36710032	3	343.8	0.011	0.54	0.291	0.34	0.65	4.24
36710034	3	346.7	0.014	0.52	0.316	0.38	0.72	4.13
36710036	3	354.8	0.020	0.52	0.349	0.35	0.73	4.21
36710038	3	329.1	0.013	0.55	0.321	0.35	0.68	3.90
36710040	3	331.5	0.014	0.55	0.332	0.37	0.67	4.43
	Mean	341.18	0.0146	0.535	0.3216	0.362	0.691	4.182
	SD	10.75	0.0033	0.015	0.0211	0.018	0.034	0.194
	(n)	(5)	(5)	(5)	(5)	(5)	(5)	(5)
36710042	4	246.7	0.017	0.73	0,469	0.36	0.81	6.13
36710044	4	291.8	0.016	0.63	0.361	0.32	0.71	6.26
36710046	4	278.7	0.015	0.58	0.358	0.31	0.77	6.20
36710048	4	307.7	0.015	0.57	0.339	0.35	0.78	5.90
36710050	4	260.6	0.015	0.70	0.419	0.32	0.69	6.20
	Mean	277.10	0.0155	0.640	0.3890	0.331	0.753	6.138
	SD	24.25	0.0008	0.071	0.0538	0.022	0.051	0.141
	(n)	(5)	(5)	(5)	(5)	(5)	(5)	(5)

^{° =} expressed as % organ to body weight ratio

APPENDIX 11.1 - Relative organ weights° - Final sacrifice - Individual data

STUDY NO.:

MALES

Animal	Group	Terminal		Testes		Thyroid	
Number	•	B.W. (g)	Spleen		Thymus	•	
36710002	1	335.6	0.268	1.217	0.147	0.008	
36710004	1	361.2	0.239	0.989	0.153	0.006	
36710006	1	348.9	0.288	1.093	0.140	0.008	
36710008	1	340.7	0.240	1.064	0.183	0.007	
36710010	1	348.3	0.244	1.031	0.134	0.007	
	Mean	346.94	0.2559	1.0790	0.1515	0.0072	
	SD	9.70	0.0214	0.0864	0.0193	0.0009	
	(n)	(5)	(5)	(5)	(5)	(5)	
36710022	2	339.9	0.265	1.081	0.192	0.008	
36710024	2	317.6	0.220	1.136	0.171	0.009	
36710026	2	320.4	0.214	1.181	0.135	0.008	
36710028	2	340.6	0.231	1.152	0.195	0.008	
36710030	2	350.9	0.266	1.111	0.132	0.006	
	Mean	333.88	0.2392	1.1324	0.1649	0.0078	
	SD	14.30	0.0246	0.0382	0.0303	0.0011	
	(n)	(5)	(5)	(5)	(5)	(5)	
36710032	3	343.8	0.209	1.009	0.161	0.008	
36710034	3	346.7	0.256	1.104	0.142	0.008	
36710036	3	354.8	0.271	1.109	0.179	0.008	
36710038	3	329.1	0.227	1.205	0.146	0.008	
36710040	3	331.5	0.220	1.096	0.171	0.008	
	Mean	341.18	0.2367	1.1047	0.1599	0.0079	
	SD	10.75	0.0258	0.0695	0.0156	0.0002	
	(n)	(5)	(5)	(5)	(5)	(5)	
36710042	4	246.7	0.177	1.534	0.075	0.010	
36710044	4	291.8	0.242	1.260	0.106	0.009	
36710046	4	278.7	0.179	1.298	0.143	0.008	
36710048	4	307.7	0.199	1.207	0.136	0.009	
36710050	4	260.6	0.186	1.272	0.091	0.009	
	Mean	277.10	0.1968	1.3140	0.1102	0.0091	
	SD	24.25	0.0269	0.1273	0.0289	0.0006	
	(n)	(5)	(5)	(5)	(5)	(5)	

[&]quot; = expressed as % organ to body weight ratio

APPENDIX 11.1 - Relative organ weights° - Final sacrifice - Individual data

STUDY NO.:

Animal	Group	Terminal		Brain		Kidneys		Ovaries
Number	•	B.W. (g)	Adrenals		Heart	-	Liver	
36710001	1	232.4	0.028	0.74	0.38	D.68	2.59	0.065
36710003	1	227.7	0.028	0.71	0.39	0.64	2.80	0.055
36710005	1	227.0	0.030	0.70	0.35	0.57	2.62	0.057
36710007	1	213.1	0.030	0.82	0.45	0.67	2.67	0.059
36710009	1	207.6	0.031	0.80	0.37	0.63	2.55	0.052
	Mean	221.56	0.0293	0.755	0.388	0.638	2.646	0.0574
	SD	10.62	0.0012	0.053	0.037	- 0.040	0.097	0.0049
	(n)	(5)	(5)	(5)	(5)	(5)	(5)	(5)
36710021	2	212.2	0.025	0.79	0.36	0.65	2,59	0.055
36710023	2	228.7	0.027	0.71	0.43	0.65	2.80	0.059
36710025	2	215.6	0.027	0.77	0.35	0.56	2.65	0.042
36710029	2	227.7	0.027	0.70	0.37	0.63	2.70	0.051
	Mean	221.05	0.0267	0.744	0.376	0.622	2.686	0.0515
	SD	8.38	0.0009	0.044	0.037	0.040	0.088	0.0072
	(n)	(4)	(4)	(4)	(4)	(4)	(4)	(4)
36710031	3	231.7	0.025	0.70	0.34	0.66	2.95	0.048
36710033	3	207.3	0.038	0.83	0.40	0.68	3.28	0.067
36710035	3	213.8	0.037	0.81	0.40	0.68	3.13	0.052
36710037	3	203.2	0.031	0.82	0.43	0.68	3.03	0.064
36710039	3	208.1	0.027	0.79	0.40	0.67	2.93	0.048
	Mean	212.82	0.0317	0.791	0.394	0.673	3.065	0.0560
	SD	11.21	0.0058	0.051	0.033	0.009	0.143	0.0091
	(n)	(5)	(5)	(5)	(5)	(5)	(5)	(5)
36710041	4	187.1	0.022	0.83	0.34	0.71	4.53	0.055
36710043	4	191.3	0.030	0.84	0.38	0.82	4.20	0.062
36710045	4	191.1	0.032	0.82	0.38	0.73	4.72	0.069
36710047	4	206.7	0.029	0.83	0.38	0.70	4.33	0.053
36710049	4	204.5	0.027	0.81	0.44	0.65	4.02	0.059
	Mean	196.14	0.0280	0.826	0.386	0.723	4.360	0.0596
	SD	8.83	0.0039	0.013	0.038	0.062	0.275	0.0062
	(n)	(5)	(5)	(5)	(5)	(5)	(5)	(5)

^{° =} expressed as % organ to body weight ratio

APPENDIX 11.1 - Relative organ weights° - Final sacrifice - Individual data

STUDY No.:

Animal	Group	Terminal		Thymus		
Number	•	B.W. (g)	Spleen		Thyroid	
36710001	1	232.4	0.336	0.188	0.006	
36710003	1	227.7	0.287	0.158	0.007	
36710005	1	227.0	0.259	0.184	0.007	
36710007	1	213.1	0.368	0.167	0.005	
36710009	1	207.6	0.329	0.149	0.008	
	Mean	221.56	0.3158	0.1690	0.0066	
	SD	10.62	0.0431	0.0166	0.0013	
	(n)	(5)	(5)	(5)	(5)	
86710021	2	212.2	0.252	0.199	0.007	
36710023	2	228.7	0.308	0.165	0.006	
36710025	2	215.6	0.217	0.213	0.008	
36710029	2	227.7	0.314	0.134	0.008	
	Mean	221.05	0.2729	0.1776	0.0072	
	SD	8.38	0.0467	0.0354	0.0008	
	(n)	(4)	(4)	(4)	(4)	
36710031	3	231.7	0.241	0.170	0.006	
36710033	3	207.3	0.236	0.162	0.006	
36710035	3	213.8	0.232	0.182	0.007	
36710037	3	203.2	0.296	0.252	0.008	
36710039	3	208.1	0.256	0.196	0.007	
	Mean	212.82	0.2523	0.1923	0.0070	
	SD	11.21	0.0259	0.0357	0.0010	
	(n)	(5)	(5)	(5)	(5)	
36710041	4	187.1	0.203	0.173	0.009	
36710043	4	191.3	0.238	0.165	0.008	
36710045	4	191.1	0.223	0.183	0.007	
36710047	4	206.7	0.224	0.140	0.007	
36710049	4	204.5	0.250	0.159	0.007	
	Mean	196.14	0.2278	0.1641	0.0076	
	SD	8.83	0.0178	0.0160	0.0008	
	(n)	(5)	(5)	(5)	(5)	

^{° =} expressed as % organ to body weight ratio

APPENDIX 11.2 - Relative organ weights° - Recovery sacrifice - Individual data

STUDY NO.:

MALES

Animal	Group	Terminal		Brain		Heart		Liver
Number	•	B.W. (g)	Adrenals	Ep	ididymides		Kidneys	
36710012	1	378.3	0.017	0.46	0.369	0.33	0.60	2.53
36710014	1.	349.5	0.013	0.50	0.323	0.33	0.57	2.40
36710016	1	382.3	0.014	0.48	0.318	0.34	0.62	2.76
36710018	1	340.8	0.013	0.53	0.330	0.35	0.58	2.44
36710020	1	372.4	0.011	0.46	0.303	0.32	0.57	2.44
	Mean	364.66	0.0135	0.487	0.3287	0.334	0.590	2.515
	SD	18.41	0.0022	0.027	0.0245	0.013	0.023	0.148
	(n)	(5)	(5)	(5)	(5)	(5)	(5)	(5)
36710052	4	281.6	0.015	0.63	0.380	0.33	0.77	6.21
36710054	4	231.2	0.014	0.68	0.288	0.30	0.72	6.37
36710056	4	252.6	0.020	0.67	0.432	0.32	0.80	6.71
36710058	4	298.9	0.020	0.57	0.354	0.34	0.71	6.04
36710060	4	303.7	0.014	0.52	0.338	0.33	0.81	6.41
	Mean	273.60	0.0166	0.613	0.3584	0.326	0.762	6.348
	SD	31.02	0.0031	0.068	0.0527	0.015	0.047	0.248
	(n)	(5)	(5)	(5)	(5)	(5)	(5)	(5)

^{° =} expressed as % organ to body weight ratio

 ${\tt APPENDIX~11.2~-~Relative~organ~weights°-~Recovery~sacrifice~-~Individual~data}$

STUDY NO.:

MALES

nimal	Group	Terminal		Testes		Thyroid
ımber		B.W. (g)	Spleen		Thymus	-
10012	1	378.3	0.262	0.989	0.126	0.006
014	1	349.5	0.215	1.029	0.124	0.005
0016	1	382.3	0.259	0.947	0.123	0.007
10018	1	340.8	0.230	1.156	0.162	0.006
0020	1	372.4	0.215	0.978	0.119	0.005
	Mean	364.66	0.2363	1.0199	0.1308	0.0054
	SD	18.41	0.0228	0.0815	0.0178	0.0008
	(n)	(5)	(5)	(5)	(5)	(5)
152	4	281.6	0.204	1.196	0.123	0.007
054	4	231.2	0.229	1.271	0.037	0.007
056	4	252.6	0.215	1.445	0.125	0.012
058	4	298.9	0.224	1.164	0.165	0.005
060	4	303.7	0.202	1.216	0.110	0.009
	Mean	273.60	0.2148	1.2583	0.1119	0.0081
	SD	31.02	0.0119	0.1112	0.0465	0.0024
	(n)	(5)	(5)	(5)	(5)	(5)

^{° =} expressed as % organ to body weight ratio

APPENDIX 11.2 - Relative organ weights* - Recovery sacrifice - Individual data

STUDY NO.:

Animal	Group	Terminal		Brain		Kidneys		Ovaries
Number	-	B.W. (g)	Adrenals		Heart	-	Liver	
36710011	1	233.5	0.025	0.72	0.34	0.58	2.40	0.051
36710013	1	215.1	0.023	0.78	0.35	0.63	2.52	0.057
36710015	1	219.2	0.031	0.78	0.39	0.63	2.35	0.048
36710017	1	222.4	0.023	0.76	0.37	0.63	2.44	0.052
36710019	1	222.4	0.021	0.69	0.36	0.59	2.45	0.054
	Mean	222.52	0.0248	0.746	0.363	0.611	2.433	0.0523
	SD	6.83	0.0041	0.041	0.020	0.024	0.065	0.0032
	(n)	(5)	(5)	(5)	(5)	(5)	(5)	(5)
36710051	4	201.4	0.026	0.86	0.38	0.64	4.23	0.048
36710053	4	191.3	0.023	0.83	0.36	0.75	4.50	0.044
36710055	4	197.6	0.028	0.84	0.38	0.70	4.25	0.061
36710057	4	213.2	0.026	0.74	0.35	0.66	3.88	0.047
36710059	4	209.8	0.024	0.78	0.35	0.72	3.95	0.057
	Mean	202.66	0.0254	0.812	0.363	0.691	4.163	0.0516
	SD	8.92	0.0019	0.049	0.015	0.046	0.250	0.0073
	(n)	(5)	(5)	(5)	(5)	(5)	(5)	(5)

^{° =} expressed as % organ to body weight ratio

APPENDIX 11.2 - Relative organ weights° - Recovery sacrifice - Individual data

STUDY NO.:

Animal	Group	Terminal		Thymus		
Number		B.W. (g)	Spleen	•	Thyroid	
36710011	1	233.5	0.295	0.264	0.011	
36710013	1	215.1	0.295	0.153	0.005	
36710015	1	219.2	0.260	0.147	0.009	
36710017	1	222.4	0.285	0.147	0.007	
36710019	1	222.4	0.230	0,159	0.009	
	Mean	222.52	0.2730	0.1741	0.0081	
	SD	6.83	0.0280	0.0504	0.0022	
	(n)	(5)	(5)	(5)	(5)	
36710051	4	201.4	0.256	0,167	0.008	
36710053	4	191.3	0.267	0.161	0.008	
36710055	4	197.6	0.278	0.145	0.013	
36710057	4	213.2	0.237	0.170	0.007	
36710059	4	209.8	0.266	0.190	0.011	
	Mean	202.66	0.2608	0.1665	0.0097	
	SD	8.92	0.0153	0.0163	0.0025	
	(n)	(5)	(5)	(5)	(5)	

[&]quot; = expressed as % organ to body weight ratio

4-week oral toxicity study in rats followed by a 2 week recovery period

APPENDIX 12 - Macroscopic and microscopic observations - Individual data

STUDY NO.:

Animal: 36710002 Sex: Male Group: 1
Day of death: 29 Dosing phase Status: Final phase sacrifice Dose level: 0.0 mg/kg/day Group: 1

Gross observations / Comments

Microscopic observations / Comments

INFLAMMATORY CELL FOCI, Multifocal, Slight,

Perivascular, Intralobular.

BILE DUCT PROLIFERATION, Multifocal, Slight.

Whole animal . . . No abnormalities detected

Adrenals Bronchi Bone marrow Brain The following tissues are normal microscopically:

Cervical nodes Colon Caecum Duodenum

Epididymides Heart Ileum Jejunum
Kidneys Lungs Mesenteric nodes Parathyroid gl.
Pituitary Prostate Rectum Sciatic nerve Seminal vesicles Spinal cord Spleen Stomach Thyroid Testes Thymus Trachea

Urinary bladder

APPENDIX 12 - Macroscopic and microscopic observations - Individual data

Day of death: 29	5710004 Sex: Male Dosing phase Stat	us: Final phase sacr	oup: 1				0.0 mg/kg/day		
Tissue	Gross observations / Comment	5		Microscopi	c observations ,	/ Comments			
				NEPHROPATHY, Focal, Slight, Unilateral.					
Liver					RY CELL FOCI, Ma ar, Intralobula:		Blight,		
				BILE DUCT	PROLIFERATION, 1	Multifocal,	Slight.		
Lungs				INFLAMMATO Interstiti	RY CELL FOCI, Fo	ocal, Sligh	t, Perivascular		
				PERIBRONCH	IAL LYMPHOID HY	PERPLASIA,	Slight.		
Prostate				MIXED INFI	AMMATORY CELL II	NFILTRATION	, Multifocal,		
Whole animal .	No abnormalities detected								
	issues are normal:	Adrenals Caecum Epididymides Mesenteric nodes Sciatic nerve Stomach Trachea	Bronchi Cervica Heart Parathy Seminal Testes	i al nodes	Bone marrow Colon Ileum Pituitary	Brain Duodenu Jejunum			

APPENDIX 12 - Macroscopic and microscopic observations - Individual data

Day of death:	36710006 29 Dosing phase		Status:	Final phase sacr	coup: 1		Dose		0.0 mg/kg/day
Tissue	Gross obser	vations / Cor	ments			Microscop:	.c observations /	Comments	
							FLAMMATION, Focal		
Kidneys						NEPHROPATHY, Focal, Slight, Unilateral.			
						INFLAMMATO Unilatera	DRY CELL INFILTRAT	ION, Focal	, Slight,
Liver							DRY CELL FOCI, Mul lar, Intralobular.		light,
						BILE DUCT	PROLIFERATION, Mu	ltifocal,	Slight.
Lungs	Abnormal ar	ea(s), Dark				INFLAMMATO Interstit	DRY CELL FOCI, Foc	al, Slight	., Perivascular
						ALVEOLAR]	HAEMORRHAGE, Focal	, Slight.	
Prostate			• •			MIXED INF	LAMMATORY CELL INF	'ILTRATION,	Multifocal,
Thyroid						THYRO-GLO	SSAL DUCT REMNANT,	Present.	
	tissues are norma		# C F F S	Adrenals Zaecum Epididymides Parathyroid gl. Seminal vesicles Testes	Bronch Cervic Ileum Pituit	al nodes ary cord	Colon Jejunum Rectum	Brain	i ic nodes nerve

_													
	 4-WEEK	ORAL	TOXICITY	STUDY	TN	RATS	FOLLOWED	BY	Α	2	WEEK	RECOVERY	PERIOD

		Sex: Male		roup: 1			e level:	0.0 mg/kg/day
Tissue	Gross observ	vations / Comments			Microscopi	c observations /	Comments	
			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			Y, Multifocal, SI		ateral.
Liver						RY CELL FOCI, Mul ar, Intralobular		Slight,
					BILE DUCT	PROLIFERATION, MA	ultifocal,	Slight.
Lungs					INFLAMMATO	RY CELL FOCI, Foo	cal, Mild.	
					alveolar H	AEMORRHAGE, Focal	l, Slight.	
Parathyroid gl.					Tissue is	missing.		
Whole animal .	No abnormali	ities detected						
	issues are normal	L	Adrenals Caecum Epididymides Mesenteric nodes Sciatic nerve	Bronchi Cervica Heart Pituita Seminal Testes	1 nodes .ry	Bone marrow Colon Ileum	Brain Duodenu Jejunum Rectum	

Day of death: 2	86710010 Sex: Male 29 Dosing phase	Status: Final phase sacr	ifice		se level: 0.0 mg/kg/day			
Tissue	Gross observations / Co	mments	Microscop	ic observations ,	/ Comments			
	Abnormal contents, Whit			unremarkable.				
Kidneys			NEPHROPAT	HY, Focal, Slight	t, Unilateral.			
Liver	Abnormal area(s), Multi	ple, Dark, Pinpoint		ORY CELL FOCI, Mi lar, Intralobula:	ultifocal, Slight, r.			
			BILE DUCT	PROLIFERATION,	Multifocal, Slight.			
Lungs				INFLAMMATORY CELL FOCI, Focal, Slight, Perivascular, Interstitial.				
			PERIBRONC	HIAL LYMPHOID HY	PERPLASIA, Slight.			
Parathyroid gl.			Tissue is	missing.				
The following t	cissues are normal /:	Adrenals Caecum Epididymides Pituitary Seminal vesicles Testes Urinary bladder	Cervical nodes Heart Prostate	Colon Ileum Rectum	Duodenum Mesenteric nodes Sciatic nerve Stomach			

4-WEEK ORA	T TOXICITA	STUDY	IN	RATS	FOLLOWED	BY	A	2	WEEK	RECOVERY	PERIOD
------------	------------	-------	----	------	----------	----	---	---	------	----------	--------

STUDY NO.:

The following tissues are normal

microscopically:

Animal: 36710012 Sex: Male Dose level: 0.0 mg/kg/day Group: 1 Day of death: 15 Recovery phase Status: Final phase sacrifice Gross observations / Comments Microscopic observations / Comments Liver . . . . . . Abnormal size, Small INFLAMMATORY CELL FOCI, Multifocal, Slight, Perivascular, Intralobular. BILE DUCT PROLIFERATION, Multifocal, Slight. INFLAMMATORY CELL FOCI, Focal, Slight, Perivascular, Interstitial. VASCULAR MINERALIZATION, Focal, Present. FRAGMENT/S OF BONE, Focal, Present. Spleen . . . . . Abnormal shape, Swollen Tissue not examined microscopically.

Thymus



APPENDIX 12 - Macroscopic and microscopic observations - Individual data

STUDY NO.:

Animal: 36710014 Sex: Male Group: 1
Day of death: 15 Recovery phase Status: Final phase sacrifice

Tissue Gross observations / Comments Microscopic observations / Comments

Ileum . . . . . Abnormal contents, Yellow, Mucoid Tissue not examined microscopically.

Jejunum . . . . Abnormal contents, Yellow, Mucoid Tissue not examined microscopically.

Liver . . . . . Abnormal size, Small INFLAMMATORY CELL FOCI, Multifocal, Slight, Perivascular, Intralobular.

BILE DUCT PROLIFERATION, Multifocal, Slight.

microscopically:

The following tissues are normal

4-WEEK ORAL TOXICITY STUDY IN RATS FOLLOWED BY A 2 WEEK R	ECOVERY PERIOD
STUDY NO.:	
Animal: 36710016 Sex: Male Group: 1 Day of death: 15 Recovery phase Status: Final phase sacrifice	Dose level: 0.0 mg/kg/day
Tissue Gross observations / Comments	Microscopic observations / Comments
Liver	INFLAMMATORY CELL FOCI, Multifocal, Slight, Perivascular, Intralobular.
	BILE DUCT PROLIFERATION, Focal, Slight.
Lungs	INFLAMMATORY CELL FOCI, Focal, Slight, Perivascular, Interstitial.
	VASCULAR MINERALIZATION, Focal, Present.

Whole animal . . . No abnormalities detected

Thymus

The following tissues are normal microscopically:

The state of the state of	4-WEEK	ORAL	TOXICITY	STUDY	ın	RATS	FOLLOWED	BY	A	2	WEEK	RECOVERY	PERIOD

STUDY NO.:

Animal: 36710018 Sex: Male Group: 1
Day of death: 15 Recovery phase Status: Final phase sacrifice

Tissue Gross observations / Comments Microscopic observations / Comments

Cervical nodes . Abnormal size, Enlarged/ up to 7x5x3mm Tissue not examined microscopically.

Liver . . . . Abnormal size, Small

INFLAMMATORY CELL FOCI, Multifocal, Slight, Perivascular, Intralobular.

BILE DUCT PROLIFERATION, Focal, Slight.

VASCULAR MINERALIZATION, Multifocal, Present.

The following tissues are normal microscopically:

Thymus

APPENDIX 12 - Macroscopic and microscopic observations - Individual data

STUDY NO.:

Animal: 36710020 Sex: Male Group: 1 Dose level: 0.0 mg/kg/day

Day of death: 15 Recovery phase Status: Final phase sacrifice

Gross observations / Comments Microscopic observations / Comments

INFLAMMATORY CELL FOCI, Multifocal, Slight,

Perivascular, Intralobular.

BILE DUCT PROLIFERATION, Focal, Slight.

Whole animal . . . No abnormalities detected

Thymus

The following tissues are normal Lungs

Thymus

The following tissues are normal

4-	-WEEK	JAAL	TOXICITY	STUDY	IN	RATS	FOLLOWED	BY	A	2 WEEK	RECOVERY	PERIOD

STUDY NO.:

Animal: 36710024 Sex: Male Group: 2
Day of death: 29 Dosing phase Status: Final phase sacrifice Dose level: 0.3 mg/kg/day Group: 2 Gross observations / Comments Microscopic observations / Comments INFLAMMATORY CELL FOCI, Multifocal, Slight, Perivascular, Intralobular. BILE DUCT PROLIFERATION, Multifocal, Slight. HEPATOCYTIC HYPERTROPHY, Slight, Centrilobular, Mid-zonal. INFLAMMATORY CELL FOCI, Focal, Slight, Perivascular, Interstitial. Whole animal . . . No abnormalities detected

The following tissues are normal

Thymus

APPENDIX 12 - Macroscopic and microscopic observations - Individual data

STUDY NO.:

Animal: 36710026 Sex: Male Group: 2
Day of death: 29 Dosing phase Status: Final phase sacrifice Group: 2 Dose level: 0.3 mg/kg/day

Gross observations / Comments Microscopic observations / Comments

INFLAMMATORY CELL FOCI, Multifocal, Slight,

Perivascular, Intralobular.

BILE DUCT PROLIFERATION, Focal, Slight.

HEPATOCYTIC HYPERTROPHY, Slight, Centrilobular,

Mid-zonal.

Thymus . . . . Abnormal area(s), Multiple, Red, Pinpoint/ left lobe Tissue is unremarkable.

The following tissues are normal Lungs

APPENDIX 12 - Macroscopic and microscopic observations - Individual data

STUDY NO.:

______

The following tissues are normal microscopically:

Thymus

4-WEEK ORAL TOXICITY STUDY IN RATS FOLLOWED BY A 2 WEEK RECOVERY PERIOD APPENDIX 12 - Macroscopic and microscopic observations - Individual data STUDY NO.: Animal: 36710030 Sex: Male Group: 2
Day of death: 29 Dosing phase Status: Final phase sacrifice Dose level: 0.3 mg/kg/day Group: 2 Gross observations / Comments Microscopic observations / Comments INFLAMMATORY CELL FOCI, Multifocal, Slight, Perivascular, Intralobular. BILE DUCT PROLIFERATION, Multifocal, Slight. HEPATOCYTIC HYPERTROPHY, Slight, Centrilobular, Mid-zonal. Tail . . . . . . Abnormal area(s), Multiple, Scab(s) / up to lx1mm SCAB/S, Present. CHRONIC INFLAMMATION, Focal, Mild.

Thymus

Lungs

The following tissues are normal

4-week oral toxicity study in rats followed by a 2 week recovery period

APPENDIX 12 - Macroscopic and microscopic observations - Individual data

STUDY NO.:

________

Sex: Male Animal: 36710032 Group: 3 Dose level: 0.8 mg/kg/day Day of death: 29 Dosing phase Status: Final phase sacrifice Gross observations / Comments Microscopic observations / Comments NEPHROPATHY, Multifocal, Slight, Unilateral. Kidneys . . . . . Abnormal area(s), Two, Pale/ up to 2xmm, right Liver . . . . . . Abnormal area(s), Multiple, Dark, Pinpoint INFLAMMATORY CELL FOCI, Multifocal, Slight, Perivascular, Intralobular. BILE DUCT PROLIFERATION, Focal, Slight. HEPATOCYTIC HYPERTROPHY, Mild, Centrilobular, Mid-zonal.

The following tissues are normal microscopically:

Lungs

Thymus

	4-WEEK ORAL T	OXICITY STUDY	IN RATS FOLLOWED BY	A 2 WEEK R	ECOVERY PERIOD
APPENDIX 12 -	Macroscopic and m	nicroscopic obs	ervations - Individ	lual data	
STUDY NO.:					
Animal: Day of death:	36710034	Sex: Male	tatus: Final phase	Group: 3 sacrifice	Dose level: 0.8 mg/kg/day
	Gross obser				Microscopic observations / Comments
	Abnormal co			. <i> </i>	INFLAMMATORY CELL FOCI, Multifocal, Slight, Perivascular, Intralobular.
					BILE DUCT PROLIFERATION, Multifocal, Slight.
					HEPATOCYTIC HYPERTROPHY, Mild, Centrilobular, Mid-zonal.
					HEPATOCYTIC NECROSIS, Focal, Slight.
•					INFLAMMATORY CELL FOCI, Focal, Slight, Perivascular, Interstitial.
	tissues are norma		Thymus		

APPENDIX 12 - Macroscopic and microscopic observations - Individual data

	36710036 Sex: Male 29 Dosing phase Status: Final pha	Group: 3 Dose level: 0.8 mg/kg/da e sacrifice	'À
Tissue	Gross observations / Comments	Microscopic observations / Comments	
Liver		INFLAMMATORY CELL FOCI, Multifocal, Slight, Perivascular, Intralobular.	
		BILE DUCT PROLIFERATION, Focal, Slight.	
		HEPATOCYTIC HYPERTROPHY, Slight, Centrilobular, Mid-zonal.	
Lungs		INFLAMMATORY CELL FOCI, Focal, Slight, Perivascular Interstitial.	÷,
		VASCULAR MINERALIZATION, Focal, Present.	
Spleen	Abnormal shape, Swollen	Tissue is unremarkable.	
Thymus	Abnormal area(s), Multiple, Red, Finpoint	Tissue is unremarkable.	



4-WEEK ORAL TOXICITY STUDY IN RATS FOLLOWED BY A 2 WEEK RECOVERY PERIOD APPENDIX 12 - Macroscopic and microscopic observations - Individual data STUDY NO.: Animal: 36710038 Sex: Male Group: 3 Dose level: 0.8 mg/kg/day Day of death: 29 Dosing phase Status: Final phase sacrifice Gross observations / Comments Microscopic observations / Comments INFLAMMATORY CELL FOCI, Multifocal, Slight, Perivascular, Intralobular. BILE DUCT PROLIFERATION, Multifocal, Slight. HEPATOCYTIC HYPERTROPHY, Mild, Centrilobular, Mid-zonal. ALVEOLAR HAEMORRHAGE, Multifocal, Slight. FRAGMENT/S OF BONE, Focal, Present. Stomach . . . . . Abnormal area(s), Single, Dark/ 2x2mm, glandular Tissue is unremarkable. The following tissues are normal Thymus microscopically:

Self and the grant of the	4-WEEK	ORAL	TOXICITY	STUDY	IN	RATS	FOLLOWED	BY	A	2	WEEK	RECOVERY	PERIOD

STUDY NO.:

microscopically:

Animal: 36710040 Sex: Male Group: 3 Day of death: 29 Dosing phase Status: Final phase sacrifice Dose level: 0.8 mg/kg/day Group: 3 Microscopic observations / Comments Gross observations / Comments INFLAMMATORY CELL FOCI, Multifocal, Slight, Perivascular, Intralobular. BILE DUCT PROLIFERATION, Focal, Slight. HEPATOCYTIC HYPERTROPHY, Mild, Centrilobular, Mid-zonal. INFLAMMATORY CELL FOCI, Focal, Slight, Perivascular, Interstitial. Whole animal . . . No abnormalities detected The following tissues are normal Thymus

4-week oral toxicity study in rats followed by a 2 week recovery period

APPENDIX 12 - Macroscopic and microscopic observations - Individual data

STUDY NO.:

Day of death: 2	6710042 Sex: Male 9 Dosing phase St.	atus: Final phase sacr	oup: 4				2.0 mg/kg/day			
Tissue	Gross observations / Comme	Microscopic observations / Comments								
					Y, Focal, Slight,					
Liver	Abnormal colour, Pale		INFLAMMATORY CELL FOCI, Multifocal, Slight, Perivascular, Intralobular.							
	Abnormal shape, Swollen			BILE DUCT PROLIFERATION, Focal, Slight.						
				HEPATOCYTIC HYPERTROPHY, Mild, Panlobular.						
Lungs			INFLAMMATORY CELL FOCI, Focal, Slight, Perivascular, Interstitial.							
Prostate			MIXED INFLAMMATORY CELL INFILTRATION, Multifocal, Slight.							
Seminal vesicle	s . Abnormal colour, Transpare		COLLOID DEPLETION, Slight.							
Stomach	Abnormal size, Thickened/region	glandular non glandula	ır	Tissue is	unremarkable.					
Thymus	Abnormal size, Small			ATROPHY,	Slight.					
	issues are normal	Adrenals Caecum Epididymides	Bronch Cervic Heart Parath Spinal	i al nodes	Ileum Pituitary Spleen	Brain Duodenum Jejunum				



_														
	1564 A 3	4-WEEK	ORAL	TOXICITY	STUDY	IN	RATS	FOLLOWED	BY	Α	2	WEEK	RECOVERY	PERIOD

Day of death: 29 1	10044 Sex: Male Group: 4 Dosing phase Status: Final phase sacrifice	
Tissue		Microscopic observations / Comments
		REACTIVE HYPERPLASIA, Mild.
Kidneys		NEPHROPATHY, Focal, Slight, Bilateral.
Liver	. Abnormal area(s)/ multiple, dark, pinpoint; single, pale, firm, $17x15x7mm$ , c/s dark and pale, firm, right caudal caudate lobe	, , , , , , , , , , , , , , , , , , ,
	Abnormal size, Enlarged	BILE DUCT PROLIFERATION, Multifocal, Slight.
		HEPATOCYTIC HYPERTROPHY, Mild, Panlobular.
		HEPATOCYTIC NECROSIS, Multifocal, Marked, Right caud caudate lobe.
Lungs		AGGREGATIONS OF ALVEOLAR MACROPHAGES, Focal, Slight.
Parathyroid gl		Tissue is missing.
Prostate		MIXED INFLAMMATORY CELL INFILTRATION, Multifocal, Slight.
Seminal vesicles		COLLOID DEPLETION, Slight.
Thymus		ATROPHY, Slight.
Jrinary bladder .		PROTEINACEOUS PLUG, Present.

APPENDIX 12 - Macroscopic and microscopic observations - Individual data

STUDY NO.:

Animal: 36710044 Sex: Male Group: 4
Day of death: 29 Dosing phase Status: Final phase sacrifice Dose level: 2.0 mg/kg/day

Gross observations / Comments Microscopic observations / Comments

The following tissues are normal microscopically:

Trachea

Adrenals Bronchi Bone marrow Brain
Caecum Colon Duodenum Epididymides
Heart Ileum Jejunum Mesenteric nodes
Pituitary Rectum Sciatic nerve Spinal cord
Spleen Stomach Testes Thyroid

Trachea

APPENDIX 12 - Macroscopic and microscopic observations - Individual data

STUDY NO.:

Day of death:	29 Dosing phase	S	tatus: Final phase s	acrifice				2.0 mg/kg/day	
Tissue	Gross obser	rvations / Comm			Microscopi	c observations /	Comments		
					INFLAMMATO	RY CELL FOCI, Mular, Interstitial.	tifocal, S		
					BILE DUCT PROLIFERATION, Focal, Slight.				
					HEPATOCYTIC HYPERTROPHY, Mild, Centrilobular, Mid-zonal.				
Lungs Abnormal colour, Red				INFLAMMATORY CELL FOCI, Focal, Slight.					
					AGGREGATIONS OF ALVEOLAR MACROPHAGES, Multifocal, Slight.  DEVELPMENTAL CYST(S), Present.				
Pituitary									
Prostate					MIXED INFLAMMATORY CELL INFILTRATION, Multifocal, slight.				
	tissues are norma		Adrenals Caecum Epididymides Kidneys Sciatic nerve Stomach	Bronch Cervic Heart Mesent Semina Testes	ni cal nodes ceric nodes al vesicles	Bone marrow	Brain Duodenur Jejunum Rectum Spleen		

Urinary bladder

4-WEER	ORAL	TOXICITY	STUDY	IN	RATS	FOLLOWED	BY	A	2	WEEK	RECOVERY	PERIOD
--------	------	----------	-------	----	------	----------	----	---	---	------	----------	--------

Day of death: 29 D		Status: Final phase sacrifice	Dose level: 2.0 mg/kg/day
	Gross observations / Co		Microscopic observations / Comments
			REACTIVE HYPERPLASIA, Slight.
Kidneys			NEPHROPATHY, Focal, Slight, Unilateral.
Liver	. Abnormal area(s), Single median lobe	le, Pale, Firm/ 4x3mm, right	INFLAMMATORY CELL FOCI, Multifocal, Slight, Perivascular, Intralobular.
	Abnormal colour, Pale		BILE DUCT PROLIFERATION, Focal, Slight.
			HEPATOCYTIC HYPERTROPHY, Mild, Centrilobular, Mid-zonal.
			HEPATOCYTIC NECROSIS, Multifocal, Mild.
•			CHRONIC INFLAMMATION, Focal, Moderate, with mineralization.
Lungs			INFLAMMATORY CELL FOCI, Focal, Slight, Perivascular, Interstitial.
			AGGREGATIONS OF ALVEOLAR MACROPHAGES, Focal, Slight.
Prostate			MIXED INFLAMMATORY CELL INFILTRATION, Multifocal, Slight.
Thymus			ATROPHY, slight.
Jrinary bladder .			PROTEINACEOUS PLUG, Present.

4-week oral toxicity study in rats followed by a 2 week recovery period

APPENDIX 12 - Macroscopic and microscopic observations - Individual data

STUDY NO.:

Animal: 36710048 Sex: Male Group: 4 Dose level: 2.0 mg/kg/day

Day of death: 29 Dosing phase Status: Final phase sacrifice

Tissue Gross observations / Comments Microscopic observations / Comments

The following tissues are normal Adrenals Bronchi Bone marrow Brain Caecum Colon Duodenum Epididymides
Heart Ileum Jejunum Mesenteric nodes
Parathyroid gl. Pituitary Rectum Sciatic nerve
Seminal vesicles Spinal cord Spleen Stomach
Testes Thyroid Trachea

## 4-WEEK ORAL TOXICITY STUDY IN RATS FOLLOWED BY A 2 WEEK RECOVERY PERIOD

APPENDIX 12 - Macroscopic and microscopic observations - Individual data

Day of death: 29	710050 Sex: Male Dosing phase Statu	s: Final phase sacr	oup: 4				2.0 mg/kg/day		
Tissue	Gross observations / Comments			Microscopic obser	vations / Co	omments			
	Abnormal size, Small/ 1mm dia			Tissue is unremarkable.					
Liver	Abnormal colour, Pale			INFLAMMATORY CELL FOCI, Multifocal, Slight, Perivascular, Intralobular.					
	Abnormal shape, Swollen			BILE DUCT PROLIFE	ERATION, Mult	tifocal,	Slight.		
				HEPATOCYTIC HYPER	RTROPHY, Milo	d, Panlok	oular.		
Lungs				INFLAMMATORY CELI	L FOCI, Focal	l, Slight	;, Perivascular,		
				AGGREGATIONS OF A	ALVEOLAR MACE	ROPHAGES,	Focal, Slight.		
				VASCULAR MINERAL	IZATION, Foca	al, Prese	ent.		
				ALVEOLAR HAEMORRE	HAGE, Focal,	Slight.			
Parathyroid gl.				Tissue is missing.					
Prostate				MIXED INFLAMMATORY CELL INFILTRATION, Multifocal, Slight.					
Seminal vesicles	. Abnormal colour, Transparent			COLLOID DEPLETION, Slight.					
Thymus	Abnormal size, Small			Tissue is unremarkable.					
	issues are normal	Bronchi Cervical nodes Heart Mesenteric nodes Spinal cord	Bone ma Colon Ileum Pituita Spleen	arrow Brain Duoden Jejun	num um n oh	Caecum Epididy Kidneys Sciatic Testes	nides		

4-Week oral toxicity study in rats followed by a 2 week recovery period

APPENDIX 12 - Macroscopic and microscopic observations - Individual data

STUDY NO.:

Thymus . . . . . Abnormal size, Small

Animal: 36710052 Sex: Male Gro Day of death: 15 Recovery phase Status: Final phase sacri	pup: 4 Dose level: 2.0 mg/kg/day fice
Tissue Gross observations / Comments	Microscopic observations / Comments
Cervical nodes Abnormal size, Single, Enlarged/ 10x8x2mm	Tissue not examined microscopically.
Liver Abnormal size, Enlarged	INFLAMMATORY CELL FOCI, Multifocal, Slight, Perivascular, Intralobular.
	BILE DUCT PROLIFERATION, Focal, Slight.
	HEPATOCYTIC HYPERTROPHY, Mild, Panlobular.
	HEPATOCYTIC NECROSIS, Focal, Mild.
Lungs	INFLAMMATORY CELL FOCI, Focal, Slight, Perivascular, Interstitial.
	ALVEOLAR HAEMORRHAGE, Focal, Slight.
Seminal vesicles . Abnormal colour, Transparent	Tissue not examined microscopically.

Tissue is unremarkable.

4-WEEK ORAL TOXICITY STUDY IN RATS FOLLOWED BY A 2 WEEK RECOVERY PERIOD

APPENDIX 12 - Macroscopic and microscopic observations - Individual data

STUDY NO.:

_______

Animal: 36710054 Sex: Male Group: 4 Dose level: 2.0 mg/kg/day
Day of death: 15 Recovery phase Status: Final phase sacrifice

Tissue Gross observations / Comments Microscopic observations / Comments

Kidneys . . . . . Pelvic dilatation, Minimal/ right Tissue not examined microscopically.

Abnormal area(s), Single, Pale/ 4x2mm, right

Liver . . . . . . . . . . . . . . . . INFLAMMATORY CELL FOCI, Multifocal, Slight,

Perivascular, Intralobular.

BILE DUCT PROLIFERATION, Multifocal, Slight.

HEPATOCYTIC HYPERTROPHY, Mild, Panlobular.

Mesenteric nodes . Abnormal colour, Two, Dark Tissue not examined microscopically.

Seminal vesicles . Abnormal colour, Transparent Tissue not examined microscopically.

Lungs

Thymus . . . . . Abnormal size, Small ATROPHY, Moderate.

Head . . . . . . Abnormal area(s), Single, Scab(s)/ 7x4mm, muzzle, 9ABN

SKIN 1)

The following tissues are normal

microscopically:

	4-WEEK ORAL TOXICITY ST	UDY IN RATS FOLLOWED B	Y A 2 WEEK R	ECOVERY PERIOD			
APPENDIX 12 -	Macroscopic and microscopic	observations - Indivi	dual data				
STUDY NO.:							
Animal: Day of death:	36710056 Sex: Mal 15 Recovery phase	e Status: Final phase	Group: 4 sacrifice	Dose level:	2.0 mg/kg/day		
Tissue	Gross observations /	Comments		Microscopic observations / Comments			
Liver			~	INFLAMMATORY CELL FOCI, Multifocal, Slight, Perivascular, Intralobular.			
				BILE DUCT PROLIFERATION, Focal, Sli	ght.		
				HEPATOCYTIC HYPERTROPHY, Mild, Panl	obular.		
Lungs				VASCULAR MINERALIZATION, Multifocal	, Present.		
	No abnormalities dete						
	tissues are normal	Thymus					

•	4-WEEK	ORAL	TOXICITY	STUDY	IN	RATS	FOLLOWED	BY	Α	2	WEEK	RECOVERY	PERIOD

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

	Covery phase Status: Final phase sacrifice Gross observations / Comments	Microscopic observations / Comments
	GIOSS ODSELVACIONS / CONMENTS	•
Kidneys	Pelvic dilatation, Minimal/ left	Tissue not examined microscopically.
	Abnormal area(s), Single, Pale/ 6x3mm, left	
Liver	Abnormal size, Enlarged	INFLAMMATORY CELL FOCI, Multifocal, Slight, Perivascular, Intralobular.
	Abnormal shape, Swollen	BILE DUCT PROLIFERATION, Focal, Slight.
·		HEPATOCYTIC HYPERTROPHY, Mild, Panlobular.
lungs		INFLAMMATORY CELL FOCI, Focal, Slight, Perivascular Interstitial.
		VASCULAR MINERALIZATION, Focal, Present.
Stomach	Abnormal contents, Yellow, Mucoid	Tissue not examined microscopically.

	4-WEEK ORAL	TOXICITY	STUDY IN	RATS	FOLLOWED	BY	A 2	WEEK	RECOVERY	PERIOD
APPENDIX 12 - Macr	coscopic and	microscop	pic obser	vatio	ns - Indi	/idu	al d	data		

STUDY No.:

Animal: 36710060 Sex: Male Dose level: 2.0 mg/kg/day Group: 4

Day of death: 15 Recovery phase Status: Final phase sacrifice

Gross observations / Comments Microscopic observations / Comments

INFLAMMATORY CELL FOCI, Multifocal, Slight,

Perivascular, Intralobular.

BILE DUCT PROLIFERATION, Focal, Slight.

HEPATOCYTIC HYPERTROPHY, Mild, Panlobular.

INFLAMMATORY CELL FOCI, Focal, Slight, Perivascular,

Interstitial.

AGGREGATIONS OF ALVEOLAR MACROPHAGES, Focal, Slight.

VASCULAR MINERALIZATION, Focal, Present.

Head Staining, Brown

The following tissues are normal

microscopically:

4-week oral toxicity study in rats followed by a 2 week recovery period

APPENDIX 12 - Macroscopic and microscopic observations - Individual data

Animal: :	36710001 Sex: Female 30 Dosing phase Statu	s: Final phase sa	Group: 1	Dos	e level:	0.0 mg/kg/day
Tissue	Gross observations / Comments		Microso	copic observations /	Comments	
Liver	Abnormal size, Small		Perivas	MATORY CELL FOCI, Mu scular, Intralobular UCT PROLIFERATION, F	. .	
Lungs			INFLAM Inters	MATORY CELL FOCI, Fo	cal, Slight	, Perivascular,
Thymus	Abnormal colour, Red/ left lo	be	Tissue	is unremarkable.		
The following microscopicall	tissues are normal y:	Adrenals Caecum Duodenum Kidneys Parathyroid gl. Spinal cord Trachea	Cervical node: Heart Mesenteric nod Pituitary Spleen	Ileum des Ovaries Rectum Stomach	Brain Colon Jejunum Oviducts Sciatic Thyroid	

4-WEEK ORAL TOX	KICITY STUDY IN	RATS FOLLOWED B	BY A 2	WEEK RECOVERY	PERIOD
-----------------	-----------------	-----------------	--------	---------------	--------

Day of death: 3	30 Dosing phase	Sex: Female Status	: Final phase sacr					0.0 mg/kg/day
		vations / Comments		Mi	icroscopi	c observations	/ Comments	
Kidneys	Abnormal co					unremarkable.		
Liver						RY CELL FOCI, M ar, Intralobula		Blight,
				В	ILE DUCT	PROLIFERATION,	Multifocal,	Slight.
Lungs					NFLAMMATO nterstiti		Focal, Slight	, Perivascular,
Pituitary				DE	EVELPMENT	AL CYST(S), Pre	esent.	
The following t	tissues are norma y:	1	Adrenals Caecum Duodenum Mesenteric nodes Rectum Stomach Urinary bladder	Cervical Heart Ovaries Sciatic r Thymus	nodes	Bone marrow Cervix Ileum Oviducts Spinal cord Thyroid	Brain Colon Jejunum Parathy Spleen Trachea	

Day of death: :	36710005 Sex: I	Status: Final phas	e sacrifice				0.0 mg/kg/day
Tissue	Gross observations	/ Comments		Microscop:	ic observations / C	Comments	
					NFLAMMATION, Focal,		
Ileum	Abnormal contents,	Yellow, Mucoid		Tissue is	unremarkable.		
Kidneys				NEPHROPAT	HY, Focal, Slight,	Unilater	al.
Liver				INFLAMMAT Intralobu	ORY CELL FOCI, Foca lar.	al, Slight	, Perivascular,
				BILE DUCT	PROLIFERATION, Mul	Ltifocal,	Slight.
Lungs					ORY CELL FOCI, Mult lar, Interstitial.	ifocal, s	Slight,
Uterus				GLANDULAR	DILATATION, Focal,	Slight.	
The following microscopicall	tissues are normal y:	Adrenals Caecum Duodenum Oviducts Sciatic ner Thymus	Cervic Jejunu Parath ve Spinal	yroid gl.	Cervix Mesenteric nodes Pituitary Spleen	Colon Ovaries Rectum Stomach	bladder

4-WEEK ORAL TOXICITY STUDY IN RATS FOLLOWED BY A 2 WEEK RECOVERY PERIOD

APPENDIX 12 - Macroscopic and microscopic observations - Individual data

	36710007 Sex: Female 30 Dosing phase Statu			Dose	level: 0.0 mg/kg/da				
	Gross observations / Comments			scopic observations / (
			INFLA	MMATORY CELL INFILTRAT					
Liver	Abnormal size, Small			MMATORY CELL FOCI, Mulascular, Intralobular.	tifocal, Mild,				
			BILE	DUCT PROLIFERATION, Mu	ltifocal, Slight.				
Lungs			VASCU	LAR MINERALIZATION, Fo	cal, Present.				
Ovaries	Abnormal size, Enlarged/ up t	.o 7x5x3mm	LUTEI	LUTEIN CYST, Unilateral, Present.					
Spleen	Abnormal shape, Swollen		Tissu	e is unremarkable.					
	tissues are normal y:	Caecum Duodenum Mesenteric nodes	Heart	Ileum Parathyroid gl.	Jejunum				

: 4-week oral toxicity study in rats followed by a 2 week recovery period

APPENDIX 12 - Macroscopic and microscopic observations - Individual data

Day of death: 3	0 Dosing phase	Sex: Female Status	: Final phase sac	rifice				0.0 mg/kg/day
Tissue	Gross obser	vations / Comments			Microscopi	c observations /	Comments	
					INFLAMMATO	RY CELL FOCI, Mul ar, Intralobular	ltifocal, S	
					BILE DUCT	PROLIFERATION, M	ultifocal,	Slight.
Lungs	· • • • • • • • •				INFLAMMATO Interstiti	RY CELL FOCI, Foo	cal, Slight	., Perivascular
Parathyroid gl.					Tissue is	missing.		
Stomach					INFLAMMATO Limiting r	RY CELL INFILTRAT	FION, Focal	, Slight,
Whole animal .	No abnormal	ities detected						
	cissues are norma	1	Adrenals	Bronch Cervic Heart Mesent	i al nodes eric nodes	Bone marrow	Brain Colon Jejunum Oviducts	;
			Spleen Urinary bladder	Thymus		Thyroid	Trachea	

4-WEEK ORAL TOXICITY STUDY IN RATS FOLLOWED BY A 2 WEEK RECOVERY PERIOD

APPENDIX 12 - Macroscopic and microscopic observations - Individual data

STUDY NO.:

Animal: 36710011 Sex: Female Group: 1 Dose level: 0.0 mg/kg/day
Day of death: 15 Recovery phase Status: Final phase sacrifice

Day Of deading 15 According phase Status, Filial phase Satisfice

Tissue Gross observations / Comments Microscopic observations / Comments

Ileum Abnormal contents, Yellow, Mucoid Tissue not examined microscopically.

Jejunum Abnormal contents, Yellow, Mucoid Tissue not examined microscopically.

Liver Abnormal size, Small INFLAMMATORY CELL FOCI, Multifocal, Slight,

Perivascular, Intralobular.

BILE DUCT PROLIFERATION, Multifocal, Slight.

The following tissues are normal microscopically:

Lungs

4-WEEK O	RAL TOX	XICITY STUDY	IN	RATS	FOLLOWED	BY	A	2	WEEK	RECOVERY	PERIOD
----------	---------	--------------	----	------	----------	----	---	---	------	----------	--------

STUDY NO .:

Animal: 36710013 Sex: Female Group: 1 Dose level: 0.0 mg/kg/day Day of death: 15 Recovery phase Status: Final phase sacrifice

Gross observations / Comments

Microscopic observations / Comments

Jejunum Abnormal contents, Yellow, Mucoid Tissue not examined microscopically.

Liver Abnormal size, Small INFLAMMATORY CELL FOCI, Multifocal, Slight,

Perivascular, Intralobular.

BILE DUCT PROLIFERATION, Multifocal, Slight.

Stomach Abnormal contents, White, Granular Tissue not examined microscopically.

The following tissues are normal

microscopically:

Lungs

4-week oral toxicity study in rats followed by a 2 week recovery period

APPENDIX 12 - Macroscopic and microscopic observations - Individual data

STUDY NO.:

Animal: 36710015 Sex: Female Group: 1 Dose level: 0.0 mg/kg/day
Day of death: 15 Recovery phase Status: Final phase sacrifice

Pissue Gross observations / Comments Microscopic observations / Comments

Liver Abnormal size, Small INFLAMMATORY CELL FOCI, Multifocal, Slight,

Perivascular, Intralobular.

Lungs

Abnormal colour, Pale BILE DUCT PROLIFERATION, Multifocal, Slight.

Skin Staining, Brown/ neck

The following tissues are normal

microscopically:

APPENDIX 12 - Mac		CITY STUDY IN RATS FOLLOW		ECOVERY PERIOD	
STUDY NO.:					
		ex: Female Status: Final p	Group: 1 bhase sacrifice	Dose level:	0.0 mg/kg/day
Tissue	Gross observat	ions / Comments		Microscopic observations / Comments	
Liver				INFLAMMATORY CELL FOCI, Multifocal, Perivascular, Intralobular.	Slight,
				BILE DUCT PROLIFERATION, Multifocal	, Slight.
Lungs				INFLAMMATORY CELL FOCI, Focal, Slig Interstitial.	ht, Perivascular,
				VASCULAR MINERALIZATION, Focal, Pre	sent.
Skin	. Staining, Brow	n/ neck			

The following tissues are normal microscopically:

State of the State	4-WEEK ORAL	TOXICITY	STUDY	IN RATS	FOLLOWED	BY A 2	WEEK	RECOVERY	PERIOD
APPENDIX 12 - Mac	roscopic and	microsco	pic obs	ervation	ns - Indi	vidual	data		

STUDY NO.:

The following tissues are normal

microscopically:

	: 36710019 : 15 Recovery phase		Group: 1 Final phase sacrifice	Dose level: 0.0 mg/kg/day	
Tissue	Gross observa	tions / Comments		Microscopic observations / Comments	
Liver				INFLAMMATORY CELL FOCI, Multifocal, Slight, Perivascular, Intralobular.	
				BILE DUCT PROLIFERATION, Multifocal, Slight.	
Lungs				INFLAMMATORY CELL FOCI, Focal, Slight, Perivascular, Interstitial.	
Whole animal	No abnormalit	ies detected			

<u>Carrier de la companie de la compan</u>	4-WEEK ORAL T	OXICITY STUDY IN RATS FOLLOW	ED BY A 2 WEEK R	ECOVERY PERIOD	
APPENDIX 12 -	Macroscopic and m	icroscopic observations - In	dividual data		
STUDY NO.:					
		Sex: Female Status: Final p		Dose level:	0.3 mg/kg/day
Tissue	Gross obser	vations / Comments		Microscopic observations / Comments	
Lìver				INFLAMMATORY CELL FOCI, Multifocal, Perivascular, Intralobular.	Slight,
				BILE DUCT PROLIFERATION, Focal, Sli	ight.
Lungs				VASCULAR MINERALIZATION, Focal, Pre	esent.
Whole animal	No abnormal	ities detected			

		OXICITY STUDY IN RATS	FOLLOWED BY A 2 WEEK R	ECOVERY PERIOD	
	•	moroscopic observacio	ms - individual data		
STUDY NO.:	S.S.Aliku,				
	36710023 30 Dosing phase		Group: 2 Final phase sacrifice	Dose level:	0.3 mg/kg/day
	Gross obser	vations / Comments		Microscopic observations / Comments	
				INFLAMMATORY CELL FOCI, Multifocal, Perivascular, Intralobular.	Slight,
				BILE DUCT PROLIFERATION, Multifocal	, Slight.
Lungs				ALVEOLAR HAEMORRHAGE, Focal, Slight	

Whole animal . . . No abnormalities detected, Single

The following tissues are normal

microscopically:

4-WEEK ORA	L TOXICITY	STUDY I	N RATS	FOLLOWED	BY	A	2	WEEK	RECOVERY	PERIOD
------------	------------	---------	--------	----------	----	---	---	------	----------	--------

APPENDIX 12 - Macroscopic and microscopic observations - Individual data

STUDY NO.:

microscopically:

The following tissues are normal

4-WEEK ORAL TOXICITY STUDY IN RATS FOLLOWED BY A 2 WEEK RECOVERY PERIOD

APPENDIX 12 - Macroscopic and microscopic observations - Individual data

STUDY NO.:

Animal: 36710027 Sex: Female Group: 2 Dose level: 0.3 mg/kg/day Day of death: 23 Dosing phase Status: Found dead Gross observations / Comments Microscopic observations / Comments Liver Abnormal area(s), Two, Ruptured/ up to 8x4mm, right, INFLAMMATORY CELL FOCI, Multifocal, Slight, left median lobe Perivascular, Intralobular. HAEMORRHAGE, Multifocal, Mild. Lungs Abnormal colour, Pale INFLAMMATORY CELL FOCI, Focal, Slight, Perivascular, Interstitial. FRAGMENT/S OF BONE, Focal, Present. Thymus Abnormal colour, Red CONGESTION/HAEMORRHAGE, Slight. Abnormal area(s), Multiple, Dark, Pinpoint/ right lobe Uterus Abnormal size, Distended/ 5mm diam HYDROMETRA, Bilateral, Slight. Abnormal contents, Clear, Fluid Abdominal cavity . Abnormal contents, Dark red/ fluid and soft Bronchi Bone marrow The following tissues are normal Adrenals Brain microscopically: Caecum Cervical nodes Cervix Colon Duodenum Heart Ileum Jejunum Mesenteric nodes Ovaries Kidneys Oviducts Parathyroid gl. Pituitary Rectum Sciatíc nerve

Spinal cord Spleen

Urinary bladder

Trachea

Stomach

Thyroid

4-WEEK	ORAL	TOXICITY	STUDY	IN	RATS	FOLLOWED	BY	A 2	WEEK	RECOVERY	PERIOD

STUDY NO.:

The following tissues are normal microscopically:

4-week oral toxicity study in rats followed by A 2 week recovery period

APPENDIX 12 - Macroscopic and microscopic observations - Individual data

STUDY NO.:

Animal: 36710031 Sex: Female Group: 3
Day of death: 30 Dosing phase Status: Final phase sacrifice Dose level: 0.8 mg/kg/day

Microscopic observations / Comments Gross observations / Comments

INFLAMMATORY CELL FOCI, Multifocal, Slight,

Lungs

Perivascular, Intralobular.

BILE DUCT PROLIFERATION, Multifocal, Slight.

Whole animal . . . No abnormalities detected

The following tissues are normal

microscopically:

•		4-WEEK	ORAL	TOXICITY	STUDY	IN	RATS	FOLLOWED	BY	A 2	WEEK	RECOVERY	PERIOD
	APPENDIX 12 - Mac	roscopic	and	microscop	oic obs	er	vation	ns - Indi	/idu	al	data		
	STUDY NO.:	S.											

The following tissues are normal Thymus microscopically:

4-WEEK	ORAL	TOXICITY	STUDY	IN	RATS	FOLLOWED	BY	Α	2	WEEK	RECOVERY	PERIOD

Abnormal contents, Clear, Fluid

STUDY NO.:

	36710035 Sex: Female 30 Dosing phase Status: Final pha	Group: 3 Dose level: 0.8 mg/kg/day se sacrifice
Tissue	Gross observations / Comments	Microscopic observations / Comments
Liver		INFLAMMATORY CELL FOCI, Multifocal, Slight, Perivascular, Intralobular.
		BILE DUCT PROLIFERATION, Multifocal, Slight.
Lungs		INFLAMMATORY CELL FOCI, Focal, Slight, Perivascular, Interstitial.
Thymus	Abnormal colour, Red/ left lobe	Tissue is unremarkable.
Uterus	Abnormal size, Distended/ 4mm diam	GLANDULAR DILATATION, Multifocal, Slight.

HYDROMETRA, Bilateral, Mild.

4-WEEK	ORAL	TOXICITY	STUDY	IN	RATS	FOLLOWED	BY	A 2	WEEK	RECOVERY	PERIOD

	36710037 30 Dosing phase		Group: 3 se sacrifice	Dose level:	0.8 mg/kg/day
Tissue	Gross observa	ations / Comments	Microscopi	c observations / Comments	
Liver				DRY CELL FOCI, Multifocal, Lar, Intralobular.	Slight,
			BILE DUCT	PROLIFERATION, Multifocal,	Slight.
Lungs				DRY CELL FOCI, Multifocal, Lar, Interstitial.	Slight,
			ALVEOLAR H	HAEMORRHAGE, Multifocal, Mi	.ld.
Ovaries	Abnormal size	e, Enlarged/ up to 8x4x3mm	Tissue is	unremarkable.	
Spleen	Abnormal sha	pe, Swollen	Tissue is	unremarkable.	
Thymus	Abnormal are	a(s), Multiple, Red, Pinpoint	Tissue is	unremarkable.	

	4-WEEK	ORAL	TOXICITY	STUDY	IN	RATS	FOLLOWED	BY	A	2	WEEK	RECOVERY	PERIOD
--	--------	------	----------	-------	----	------	----------	----	---	---	------	----------	--------

STUDY NO.:

	36710039 30 Dosing phase	Sex: Female Status: Final	Group: 3 phase sacrifice	Dose level:	0.8 mg/kg/day
Tissue	Gross obser	vations / Comments	Micr	oscopic observations / Comments	
Liver					Slight,
			BILE	DUCT PROLIFERATION, Multifocal	, Slight.
Lungs		ea(s), Multiple/ dark red; red pinpoint left, right		AMMATORY CELL FOCI, Multifocal, vascular, Interstitial.	Slight,
			ALVE	OLAR HAEMORRHAGE, Multifocal, M	ild.

The following tissues are normal microscopically:

Animal: 36710041 Day of death: 30 Dosing phase	Status:		ice			2.0 mg/kg/da
Tissue Gross obs	servations / Comments		Microscop	ic observations /	Comments	
Liver			INFLAMMAT	ORY CELL FOCI, Mu lar, Intralobular	ltifocal, S	
			BILE DUCT	PROLIFERATION, F	ocal, Sligh	it.
			HEPATOCYT Mid-zonal	IC HYPERTROPHY, S.	light, Cent	rilobular,
Lungs			INFLAMMAT Interstit	ORY CELL FOCI, Fo	cal, Slight	., Perivascular
Uterus			HYDROMETR	A, Bilateral, Sli	ght.	
Whole animal No abnorm	nalities detected					
The following tissues are non microscopically:	cmal	Adrenals Caecum Duodenum Kidneys Parathyroid gl.	Bronchi Dervical nodes Heart Mesenteric nodes Pituitary	Bone marrow Cervix Ileum Ovaries Rectum	Brain Colon Jejunum Oviducts Sciatic	;
		*	Spleen Frachea	Stomach Urinary bladder	Thymus	

Day of death:	36710043 30 Dosing phase	Sex: Female Status	G: Final phase sac	rifice				2.0 mg/kg/day
lissue	Gross obser	vations / Comments		1	Microscopi	c observations /	Comments	
					INFLAMMATO	RY CELL FOCI, Mul ar, Interstitial	ltifocal, S	
				;	BILE DUCT	PROLIFERATION, M	ultifocal,	Slight.
					HEPATOCYTI Mid-zonal.	C HYPERTROPHY, M:	ild, Centri	lobular,
ungs					INFLAMMATO Interstiti	RY CELL FOCI, Foo	cal, Slight	., Perivascular
					AGGREGATIO	NS OF ALVEOLAR M	acrophages,	Focal, Slight
arathyroid g	1				Tissue is	missing.		
Jterus					GLANDULAR	DILATATION, Mult:	ifocal, Sli	ight.
Skin	Staining, B	rown/ neck						
	tissues are norma	1	Adrenals Caecum Duodenum Kidneys Pituitary Spleen Trachea	Bronchi Cervica Heart Mesente Rectum Stomach	l nodes	Bone marrow	Brain Colon Jejunum Oviducts	i .

Day of death:	36710045 Sex: Female 30 Dosing phase	Status: Final phase sacr	oup: 4 ifice		e level: 2.0 mg/kg/day			
	Gross observations / Com			oic observations /	Comments			
				NEPHROPATHY, Focal, Slight, Bilateral.				
Liver				CORY CELL FOCI, Mul lar, Intralobular.				
			BILE DUCT	PROLIFERATION, FO	ocal, Slight.			
			HEPATOCYI Mid-zonal	· ·	light, Centrilobular,			
Lungs			AGGREGATI	ONS OF ALVEOLAR MA	ACROPHAGES, Focal, Slight.			
Whole animal	No abnormalities detected	d						
The following microscopical:	tissues are normal	Adrenals Caecum Duodenum Mesenteric nodes Pituitary Spleen Trachea	Rectum	Cervix Ileum Oviducts Sciatic nerve Thymus	Brain Colon Jejunum Parathyroid gl. Spinal cord Thyroid			

Animal: 36	5710047 Sex: Female Dosing phase Stat	Gro	•	Dose	level:	2.0 mg/kg/day
	Gross observations / Comment	 S	Microscopi	c observations / C	Comments	
	Abnormal colour, Pale		INFLAMMATO	RY CELL FOCI, Mult ar, Intralobular.		
			BILE DUCT	PROLIFERATION, Foo	al, Sligh	t.
			HEPATOCYTI Mid-zonal.	C HYPERTROPHY, Mil	id, Centri	lobular,
Lungs				RY CELL FOCI, Multar, Interstitial.	tifocal, S	light,
			ALVEOLAR H	AEMORRHAGE, Multif	focal, Mil	d.
hymus			ATROPHY, S	light.		
Jterus			GLANDULAR	DILATATION, Multii	focal, Sli	ght.
			HYDROMETRA	, Bilateral, Mild.		
	issues are normal:	Adrenals Caecum Duodenum Kidneys Parathyroid gl. Spinal cord	Bronchi Cervical nodes Heart Mesenteric nodes	Bone marrow Cervix Ileum Ovaries		i.

Day of death: 30	Dosing phase	Sex: Female Status	: Final phase sac:	rifice				2.0 mg/kg/day
Tissue	Gross obser	vations / Comments		М	icroscopi	c observations	/ Comments	
Liver				I	NFLAMMATO	RY CELL FOCI, ar, Intralobul	Multifocal, S	
				В	ILE DUCT	PROLIFERATION,	Focal, Sligh	t.
					EPATOCYTI id-zonal.	C HYPERTROPHY,	Mild, Centri	lobular,
Lungs						RY CELL FOCI, ar, Interstiti		light,
				A	LVEOLAR H	AEMORRHAGE, Mu	altifocal, Sli	ght.
Ovaries				I	UTEIN CYS	T, Unilateral,	Present.	
Thyroid				T	HYRO-GLOS	SAL DUCT REMNA	ANT, Present.	
Whole animal	. No abnormal	ities detected						
The following tis microscopically:		1	Adrenals Caecum Duodenum	Bronchi Cervical Heart	nodes	Bone marrow Cervix Ileum	Brain Colon Jejunum	
			Kidneys Pituitary Spleen	Rectum Stomach		Oviducts Sciatic nerve Thymus	Parathyr Spinal o Trachea	

Urinary bladder Uterus

				~ mr.	***	~~~~	DOT TOTION	-	-	_		DECOMBRA	DDD TOD
4.45	4-WEEK	ORAL	TOXICITY	STUDY	ΤN	RATS	FOPTOMED	ВΪ	A	4	WEEK	RECOVERY	PEKTOD

STUDY NO.:

Animal: 36710051 Sex: Female Group: 4 Dose level: 2.0 mg/kg/day
Day of death: 15 Recovery phase Status: Final phase sacrifice

Tissue Gross observations / Comments Microscopic observations / Comments

Liver INFLAMMATORY CELL FOCI, Multifocal, Slight,

Perivascular, Intralobular.

BILE DUCT PROLIFERATION, Multifocal, Slight.

HEPATOCYTIC HYPERTROPHY, Slight, Centrilobular,

Mid-zonal.

Thymus Abnormal size, Small Tissue is unremarkable.

Head Staining, Brown

The following tissues are normal Lungs

microscopically:

3.34 – ₩FF EK	ORAT.	TOXICITY	STIIDY	TN	RATS	FOLLOWED	BY	Δ	2	WEEK	RECOVERY	PERTOD

APPENDIX 12 - Macroscopic and microscopic observations - Individual data

STUDY NO.:

The following tissues are normal

microscopically:

Animal: 36710053 Sex: Female Group: 4 Dose level: 2.0 mg/kg/day Day of death: 15 Recovery phase Status: Final phase sacrifice Gross observations / Comments Microscopic observations / Comments INFLAMMATORY CELL FOCI, Multifocal, Mild, Perivascular, Intralobular. BILE DUCT PROLIFERATION, Multifocal, Slight. HEPATOCYTIC HYPERTROPHY, Slight, Centrilobular, Mid-zonal. VASCULAR MINERALIZATION, Multifocal, Present. Stomach Abnormal contents, Yellow, Soft Tissue not examined microscopically.

4-WEEK	ORAL	TOXICITY	STUDY	IN	RATS	FOLLOWED	BY	Α	2	WEEK	RECOVERY	PERIOD

APPENDIX 12 - Macroscopic and microscopic observations - Individual data

STUDY NO.:

	36710055 15 Recovery phase	Sex: Femal		G Final phase sac	roup: 4 rifice	I	ose	level:	2.0 mg/kg/day
Tissue	Gross observ	vations / Co	omments		M	icroscopic observations	; / C	omments	

Jejunum Abnormal contents, Yellow, Mucoid Tissue not examined microscopically.

Liver Abnormal area(s), Multiple, Dark, Pinpoint INFLAMMATORY CELL FOCI, Multifocal, Slight,

Perivascular, Intralobular.

BILE DUCT PROLIFERATION, Focal, Slight.

HEPATOCYTIC HYPERTROPHY, Slight, Centrilobular,

Mid-zonal.

Interstitial.

The following tissues are normal microscopically:

Thymus

APPENDIX 12 - Macroscopic and microscopic observations - Individual data

	36710057 Sex: Female 15 Recovery phase Status: Final	
Tissue	Gross observations / Comments	Microscopic observations / Comments
Liver		INFLAMMATORY CELL FOCI, Multifocal, Slight, Perivascular, Intralobular.
		BILE DUCT PROLIFERATION, Focal, Slight.
		HEPATOCYTIC HYPERTROPHY, Slight, Centrilobular, Mid-zonal.
Lungs		INFLAMMATORY CELL FOCI, Focal, Slight, Perivascular Interstitial.
		AGGREGATIONS OF ALVEOLAR MACROPHAGES, Focal, Slight
		VASCULAR MINERALIZATION, Focal, Present.
		ALVEOLAR HAEMORRHAGE, Focal, Slight.
Stomach	Abnormal contents, Yellow, Mucoid	Tissue not examined microscopically.
Thymus	Abnormal area(s), Multiple, Red/ up t	o 2x2mm Tissue is unremarkable.

APPENDIX 12 - Macroscopic and microscopic observations - Individual data

STUDY NO.:

######################################	

	36710059 Sex: Fema 15 Recovery phase		Group: 4 e sacrifice	Dose level: 2.0 mg/kg/day
	Gross observations / G	Comments		Microscopic observations / Comments
***************************************				INFLAMMATORY CELL FOCI, Multifocal, Slight, Perivascular, Intralobular.
				BILE DUCT PROLIFERATION, Multifocal, Slight.
				HEPATOCYTIC HYPERTROPHY, Slight, Centrilobular, Mid-zonal.
Lungs				INFLAMMATORY CELL FOCI, Focal, Slight, Perivascular, Interstitial.
Thymus	Abnormal area(s), Mul	tiple, Red, Pinpoint		Tissue is unremarkable.
Uterus	Abnormal size, Disten	ded/ 5mm diam		Tissue not examined microscopically.
Uterus	Abnormal contents, Cl	ear, Fluid		

Head Staining, Brown

4-WEEK ORAL TOXICITY STUDY IN RATS FOLLOWED BY A 2

ADDENDUM I - Computer abbreviations and symbols

Abbreviations	Parameter names	Units
HCT	HAEMATOCRIT	%
RBC	RED BLOOD CELL COUNT	10^12/1
HGB	HAEMOGLOBIN	g/dl
MCV	MEAN RED BLOOD CELL VOLUME	fl
MCH	MEAN CORPUSCULAR HAEMOGLOBIN	pg
MCHC	MEAN CORPUSCULAR HAEMOGLOBIN CONCENTRATION	g/dl
PLT	PLATELETS	10^9/1
WBC	WHITE BLOOD CELL COUNT	10^9/1
NEU	NEUTROPHILS	%
LYM	LYMPHOCYTES	%
MON	MONOCYTES	%
EOS	EOSINOPHILS	%
BAS	BASOPHILS	%
LUC	LARGE UNSTAINED CELLS	%
PT	PROTHROMBIN TIME	sec
AP	ALKALINE PHOSPHATASE	U/l
ALT	ALANINE AMINOTRANSFERASE	U/l
AST	ASPARTATE AMINOTRANSFERASE	U/l
GGT	GAMMAGLUTAMYLTRANSFERASE	U/I
GLU	GLUCOSE	mg/dl
BILT	TOTAL BILIRUBIN	mg/dl
CHOL	TOTAL CHOLESTEROL	mg/dl
PROT	TOTAL PROTEIN	g/dl
NA	SODIUM	mmol/l
K	POTASSIUM	mmol/l
CA	CALCIUM	mmol/l
CL	CHLORIDE	mmol/l
UREA	UREA	mg/dl
CREA	CREATININE	mg/dl
VOL	URINE VOLUME (OVERNIGHT)	mĪ
SG	SPECIFIC GRAVITY	
PRO	PROTEIN	mg/dl
BLD	HAEMOGLOBIN	mg/dl
KET	KETONES	mg/dl
BIL	BILIRUBIN	mg/dl
URO	UROBILINOGEN	mg/dl
TRI	TRIGLYCERIDES	mg/dl
ALB	ALBUMIN	g/dl
GLO	GLOBULIN	g/dl
AGR	ALBUMIN/GLOBULIN RATIO	J

4-WEEK ORAL TOXICITY STUDY IN RATS FOLLOWED BY A 2

WEEK RECOVERY PERIOD

ADDENDUM I - Computer abbreviations and symbols

Abbreviations	Parameter names	Units/Key
EPI LEU ERY CRY SPE ABN	EPITHELIAL CELLS LEUCOCYTES ERYTHROCYTES CRYSTALS SPERMATOZOA ABNORMAL COMPONENTS	0 = no cells or crystals 1 = few cells or crystals in some fields 2 = few cells or crystals in all fields 3 = many cells or crystals in all fields
APP	URINE APPEARANCE	0 = normal 1 = turbid
RED	REDUCING SUBSTANCES	0 = 0.0 - 2.5 g/l 1 = 2.5 - 7.5 g/l 2 = 7.5 - 10.0 g/l 3 = 10.0 - 20.0 g/l
Ctls SD Cervical nodes Mesenteric nodes gl	Control Standard deviation Cervical lymph nodes Mesenteric lymph nodes Glands	

ADDENDUM II - Abbreviations of neurotoxicity tests

STIMULU	S REACTIVITY	
APPR	APPROACH RESPONSE	 no reaction rat slowly approaches and sniffs or turns away rat freezes, actual muscle contractions more energetic response than 2) or 3) exaggerated reaction - jumps, bites, or attacks
TOUC	TOUCH RESPONSE	 no response rat may slowly turn or walk away, or vocalizations with little or no movement rat freezes, actual muscle contractions more energetic response than 2) or 3) exaggerated reaction - jumps, bites, or attacks
CLIK	CLIKER RESPONSE	 no reaction slight reaction, some evidence that noise was heard rat freezes, actual muscle contractions more energetic response than 2) or 3) exaggerated reaction - jumps, bites, or attacks
TAIL	TAIL PINCH RESPONSE	 no reaction rat may turn or walk forward, or vocalizations with little or no movement rat freezes, actual muscle contractions more energetic response than 2) or 3) exaggerated response - jumps, bites, or attacks
COUN	COUNT	The number of times the animal crosses the beam of the photoelectric cell.
BW		Body weight

ADDENDUM II - Abbreviations of neurotoxicity tests

Abbreviations	Parameter names	Key
PUPI	PUPIL RESPONSE	constriction of the pupil is noted with "+" and "-" indicates lack of response
RIGH	RIGHTING REFLEX	 normal, rat lands on feet slightly uncoordinated lands on side lands on back
GRI1/2/M	GRIP STRENGTH 1/2/MEAN	two readings (GRI 1 and GRI 2) are taken and averaged. Forelimb strength is evaluated by assessing the time (seconds) the animal grips on a horizontal bar
LAN1/2/M	LANDING FOOT SPLAY 1/2/MEAN	two readings are taken and averaged. Measurements of distance between ink blots (cm)

ADDENDUM III - Analytical method and validation report for formulation analysis and formulation analysis results

STUDY NO.:

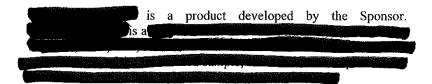
WARNING AND SAFETY PRECAUTIONS

SAFETY

Organic solvents - all organic solvents must be treated as potentially hazardous and all procedures using them must be performed in a fume cupboard.

Appropriate eye protection, impervious gloves and lab coat should be worn.

This method requires the use of corrosive and toxic reagents. It is the responsibility of the analyst to perform the method consistent with safe laboratory practices. The analyst should wear eye protection, impervious gloves, and a lab coat when preparing standards and processing samples. Caution statements have been included in the method giving specific guidance to certain procedural steps. Detailed hazard information should be obtained from the current MSDS available from the manufacturer of the solvent or reagent.


FIRST AID

Solvents, acids and alkalis in contact with skin - wash with copious amounts of cold water. Splashes in the eye - irrigate with water and seek medical attention immediately.

Cuts - seek assistance of first aide immediately.

Burns and frostbite - run affected part under cold water (burns) or tepid water (frostbite) for 10 minutes and seek medical attention.

INTRODUCTION

1. SCOPE

This method of analysis describes the analysis of material in water.

2. FIELD OF APPLICATION

The method is described to be used for formulated product in water. The range of application is from 0.03mg/mL to 0.2mg/mL).

3. REFERENCES

ISO Standard 78/2-1982 Layout for standards - Part 2: Standard for Chemical Analysis

DEFINITIONS

4.

5.

in the formulation determined according to the described method and expressed as mg of analyte per ml test sample.

PRINCIPLE

The method essentially consists of five steps:

- Sampling
- Evaporation
- Esterification
- Extraction with 2,2,4 Trimethylpentane (Isooctane)
- GC/FID

6. REACTIONS

7. REAGENTS AND MATERIALS

Note: The reagents (and equipment) for which examples of their sources are quoted are known to be satisfactory, nevertheless reagents and equipment from other sources may be equally suitable. All the reagents must be of analytical grade or better.

7.1 Chemicals

2,2,4 Trimethylpentane (Isooctane) (Aldrich 360597)

reference standard batch 90409/86-I

Phenantrene Internal Standard. (Fluka 77470) batch 381400/1 10900

N-Hexane (Carlo Erba 46963)

Methanol (J.T. Baker 8402)

Water (produced by Easypure)

Ammonium hydroxide 32% (Merck 5426)

Sulphuric acid 98% (J.T. Baker 6163-1)

7.2 Solutions

Internal Standard:

About 8 mg are transferred into a 10mL volumetric flask and dissolved with N-Hexane obtaining a 800µg/mL solution. 1mL of this solution is transferred into a 10 ml volumetric flask and dissolved with Isooctane obtaining an 80µg/mL solution.

1% (W/W) H₂SO₄ in Methanol:

In a 250mL glass flask weigh 160g of Methanol and slowly add 1.7g of Sulphuric acid.

7.3 Standard solutions

7.3.1 Stock A:

Due to a difficulty in weighing the substance, about 30 mg of analytical standard are transferred into 10 ml volumetric flask and dissolved with Methanol. An adequate dilution was made to obtain a $2500\mu g/mL$ solution (Stock1).

7.3.2 Std 1:

50μL of Stock1 are diluted in 4950μL of water into a glass vial.

7.3.3 Std 2:

100μL of Stock1 are diluted in 4900μL of water into a glass vial.

7.3.4 Std 3:

150µL of Stock1 are diluted in 4850µL of water into a glass vial.

7.3.5 Low recovery (0.03mg/mL):

60μL of Stock1 are diluted in 4940μL of water into a glass vial.

7.3.6 High recovery (0.2mg/mL):

 $400\mu L$ of Stock1 are diluted in $4600\mu L$ of water into a glass vial. $1250\mu L$ of this solution are added in $3750\mu L$ of water into a glass vial

8. APPARATUS

Analytical balance Mettler AT 261 Delta range

GC Fisons Trace GC

Detector Flame ionisation detector
Software Empower Pro Build N°1154
Printer HP Laser Jet 4050 Series PCL6
Column ZB-1 30m x 0.32mm ID x 0.5μm FT

GC siring for OC Hamilton 80351

GC microvials Pasteur pipettes Volumetric pipettes Common glassware

Evaporator Reacti Therm III Pierce

Air circulation oven

9.

SAMPLING AND SAMPLES

Nature of the Sample; Samples shall be such as to enable the detection of substance in the relevant formulations.

Size of Sample; The size of the sample must be large enough to allow the method to be carried out and to allow repeated analysis where required.

The samples must be taken and packed in such a way as to allow proper identification in the laboratory.

The method of packing, preservation and transport must maintain the integrity of the sample and not prejudice the results of the examination. Samples for the analysis of must be stored at room temperature.

10.

PROCEDURE

10.1

Sampling

10.1.1

Calibration and recovery samples

Add $30\mu L$ of Ammonium hydroxide 32% to the sample. Evaporate the sample to dryness in the Reactitherm at about $60^{\circ}C$ with a gentle stream of nitrogen.

Add to the sample $500\mu L$ of 1% (W/W) H_2SO_4 in Methanol and heat the vials for 16 hours in a 70°C air circulation oven.

Add, at room temperature, $250\mu L$ of Isooctane, $50\mu L$ of ISTD and 2mL of water. Allow a good phase separation and then draw the superior phase for the analyses in GC.

10.1.2

Blank and unknown samples.

Samples are taken as follows:

		Expected					
Step	Action	0mg/mL	0.03mg/mL	0.08mg/mL	0.2mg/mL		
1	transfer	5mL	5mL	2.5mL	1.25mL		
·	dilute with water to			5mL	5mL		

For other concentrations samples will be prepared with an appropriate dilution.

Transfer into GC vials.

10.1.3

GC

The following system is set up:

Column:

ZB-1 30 m x 0.32 mm ID x 0.5 μ m FT

Carrier:

Helium (2mL/Min)

Hydrogen:

30mL/Min

Air: 120mL/Min

Detector: Flame ionization detector (FID) 250°C

Injector On column at room temperature

Injection volume: 1µl

Oven: 40°C ----- 8°C/Min ---- >250°C (10Min.)
Retention Time: 12 minutes for and 26.5

minutes for Phenantrene (ISTD)

Run time: 35 minutes

As a test of system suitability, inject 1µl of any of the Standard Curve Solutions and observe the retention time of the peak. To be acceptable, the retention time of the peak must fall in the range of 11 to 13 minutes. If the retention time of falls outside the acceptable range for the system suitability standard solution, the mobile phase (Carrier) must be adjusted in the following ways. If the retention time of the system is before 11 min. the mobile phase should be adjusted by increasing the carrier flow. Conversely, if the retention time of the system is after 13 min. the mobile phase should be adjusted by decreasing the carrier flow.

The GC is calibrated using the chromatographic software which generates a linear calibration curve drawing the best fit of a line, to the amounts of μ in μ g/mL and the response factor peaks area (Std and Istd). The software uses linear fit formula. The result of the fitting is:

y = A + B*x

where

B = Slope of the calibration curve

A= Intercept

y = Response factor

 $x = \frac{1}{2}$ amount in $\mu g/mL$

Unknown samples are injected after the GC calibration. Results of the amount in µg/mL are obtained directly from the GC report. The result is calculated by the software as:

$$x = (y-A)/B$$

EXPRESSION OF RESULTS

contents in matrix as μg/mL are obtained as follows:

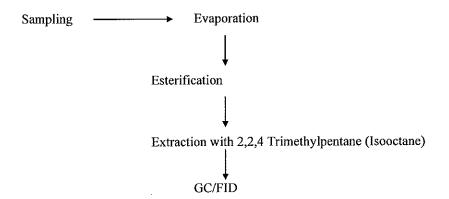
$$C = (x \bullet FD) / 1000$$

where:

11.

 $C = content of in water as \mu g/mL$

amount in $\mu g/mL$ as read in the chromatogram result table


FD = Dilution Factor

12. SPECIAL CASES

13. NOTES ON PROCEDURE

14. TEST REPORT

15. SCHEMATIC REPRESENTATION OF PROCEDURE

16. BIBLIOGRAPHY

Analytical method

17. VALIDATION RESULTS

17.1 Linearity

Calibration samples in triplicate at three levels ranging from $25\mu g/mL$ to $75\mu g/mL$ were processed as described in the analytical method. The following correlation was found:

Added	Response	Calculated	Deviation
ng/ml	(IS Analyte/ Analyte	Concentration	%
_	area)	(ng/mL)	
25.16	0.308	27.512	-8.549
25.16	0.327	29.002	-13.246
25.16	0.287	25.773	-2.378
50.32	0.535	45.918	9.586
50.32	0.521	44.778	12.376
50.32	0.544	46.650	7.866
75.48	0.926	77.540	-2.656
75.48	0.953	79.738	-5.340
75.48	0.906	75.969	-0.644

Equation: Response = -0.031570 + 0.012348*

Conc.

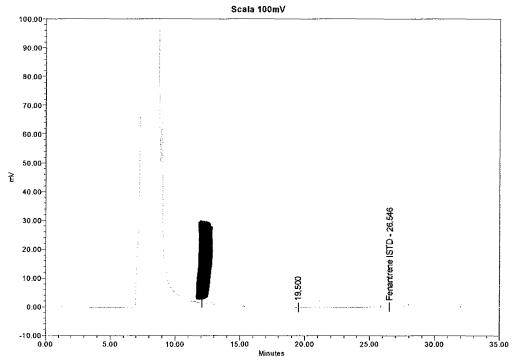
: 0.986227

Response type: area Fit type: linear Weighting: none 17.2 Selectivity

No interfering peaks were present at the retention time.

17.3 Accuracy and precision

Sextuplicates at the following concentration were prepared and analysed:

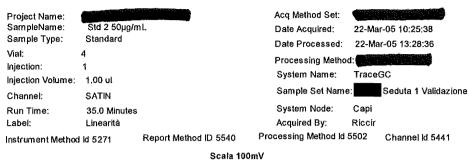

Amount added	Amount found		Accuracy	Precision
μg/mL	μg/mL	Mean (μg/mL)	%	CV %
30.192	30.974 30.47 30.968 30.528 31.079 30.828	30.81	102.04	0.82
201.28	201.76 193.536 207.764 201.532 199.9 202.056	201.1	99.91	2.27

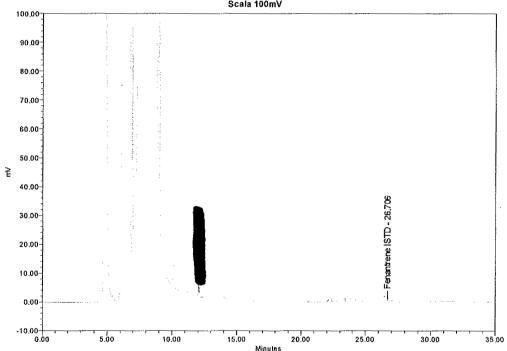
Chromatogram of a blank samples

Sample Information

Project Name: Acq Method Set: SampleName: Isottano Date Acquired: 22-Mar-05 08:11:42 Sample Type: Unknown Date Processed: 22-Mar-05 13:30:35 Vial: Processing Method: Injection: System Name: TraceGC Injection Volume: 1.00 ul Sample Set Name: Seduta 1 Validazione Channel: SATIN System Node: Run Time: 35.0 Minutes Acquired By: Riccir Label:

Instrument Method id 5271 Report Method ID 5540 Processing Method id 5602 Channel id 5430

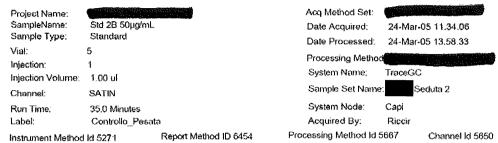



		Peak I	₹esul	ts		
	Name	RT	Area	Height	Amount	Units
1		12.075				
2		19.500	487	-74		
3	Fenantis pe 15713	25,546				

				Calibrat	ion Curve			
	L	Name	Date Calibrated	Α	В	R	₽^2	Processing Method
	1		22-Mar-05 13:30:05	-3.261100e-002	1 22760 Se-002	0.984386	0.969015	
ſ	2 1	Fenantrene ISTD	22-Mar-05 13:30:05	0.000000e+000	4.945317e+004	1.000000	1.000000	

Chromatogram of a standard solution at approximately a 50 µg/mL

Sample Information

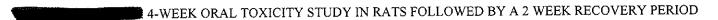


		Peak	Resul	ts		
	Name	RT	Area	Height	Amount	Units
11		12.071	25389	3367	50.320	μg/m L
2	Fenantrene ISTD	26.706	48699	1962	1.000	µg/mŁ

Calibration Curve								
	Name	Date Calibrated	Α	В	R	R^2	Processing Method	
1	التسير	22-Mar-05 13:30:05	-3.261100e-002	1 227606e-002	0.984386	0.969015		
2	Fenantrene ISTD	22-Mar-05 13:30:05	0.000000e+000	4.945317e+004	1.000000	1.000000	All the systems of the	

Expanded Chromatogram on Standard Solution

Sample Information


Scala 30mV 30.00 28.00 26.00 24.00 22.00 20.00 18.00 16.00 14.00 Fenantrene ISTD - 26,564 12.00 10.00 8.00 6.00 4.00 2.00 0.00 -2.00 9.00 5.00 10.00 15.00 20.00 25 00 30.00 35.00

Minutes

	Peak Results							
	Name	RT	Area	Height	Amount	Units		
1		12.087	32779	4665	49.968	µg/mL		
2	Fenantrene ISTD	26,564	48567	1997	1.000	րց/ու		

		c.	alibration Curve			
	Name	Date Calibrated	A	8	R	R^2
1		24-Mar-05 13.58.45	0.000000e+000	1.347710e-002	0.315746	0.099696
2	Fenantrene ISTD	24-Mar-05 13.58.45	0.000000e+000	4.649375e+004	1.000000	1.000000

Formulation analysis - Pre-treatment - Content check

Group	Sex	Intended Concentration mg/ml	Found Concentration mg/ml	Recovery %	Recovery Limits %
1	M-F	0	0	**	-
2	M-F	0.03	0.0305	101.67	95 -105
3	M-F	0.08	0.0784	98.00	95 -105
4-5	M-F	0.2	0.1988	99.38	95 -105

Formulation analysis - Stability 6 days at room temperature - Content check

Group	Sex	Intended Concentration mg/ml	Found Concentration mg/ml	Recovery %	Recovery Limits %
2	M-F	0.03	0.02978	99.27	95 -105
4-5	M-F	0.2	0.1928	96.42	95 -105

Formulation analysis - Day 1 of treatment - Content check

Group	Sex	Intended Concentration mg/ml	Found Concentration mg/ml	Recovery %	Recovery Limits %
1	M-F	0	0	-	-
2	M-F	0.03	0.03061	102.04	95 -105
3	M-F	0.08	0.0798	99.75	95 -105
4	M-F	0.2	0.1953	97.66	95 -105

Formulation analysis - Day 1 of treatment for Toxicokinetic groups - Content check

Group	Sex	Intended Concentration mg/ml	Found Concentration mg/ml	Recovery %	Recovery Limits %
1	M-F	0	0	-	-
4-5	M-F	0.2	0.2079	103.97	95 -105

Formulation analysis - Week 4 of treatment - Content check

Group	Sex	Intended Concentration mg/ml	Found Concentration mg/ml	Recovery %	Recovery Limits %
1	M-F	0	0		-
2	M-F	0.03	0.02993	99.76	95 -105
3	M-F	0.08	0.08132	101.65	95 -105
4	M-F	0.2	0.2051	102.57	95 -105

ADDENDUM IV - Analytical method and validation report for toxicokinetic analysis and toxicokinetic analysis results

STUDY NO.

WARNING AND SAFETY PRECAUTIONS

SAFETY

Organic solvents - all organic solvents must be treated as potentially hazardous and all procedures using them must be performed in a fume cupboard.

Appropriate eye protection, impervious gloves and lab coat should be worn.

This method requires the use of corrosive and toxic reagents. It is the responsibility of the analyst to perform the method consistent with safe laboratory practices. The analyst should wear eye protection, impervious gloves, and a lab coat when preparing standards and processing samples. Caution statements have been included in the method giving specific guidance to certain procedural steps. Detailed hazard information should be obtained from the current MSDS available from the manufacturer of the solvent or reagent.

FIRST AID

Solvents, acids and alkalis in contact with skin - wash with copious amounts of cold water. Splashes in the eye - irrigate with water and seek medical attention immediately.

Cuts - seek assistance of first aider immediately.

Burns and frostbite - run affected part under cold water (burns) or tepid water (frostbite) for 10 minutes and seek medical attention.

1. INTRODUCTION

is a substance developed by the Sponsor.

18 a

Concentration is calculated considering following % distribution

2. SCOPE

The method of analysis describes the detection of in rat plasma.

3.

FIELD OF APPLICATION

The method is described to be used for rat plasma in a range from approximately:

4.87 ng/ml about 4870 ng/ml for

0.95 ng/ml about 950 ng/ml for

2.35 ng/ml about 2350 ng/ml for

0.77 ng/ml about 770 ng/ml for

1.16 ng/ml about 1160 ng/ml for

4.

REFERENCES

ISO Standard 78/2-1982 Layout for standards - Part 2: Standard for Chemical Analysis

5.

DEFINITIONS

in rat plasma determined according to the described method and expressed as ng of analyte per ml test sample.

6.

PRINCIPLE

The method essentially consists of four steps:

- Protein precipitation
- Evaporation
- Dissolution
- LC/MS/MS

7.

REACTIONS

8.

REAGENTS AND MATERIALS

Note: The reagents (and equipment) for which examples of their sources are quoted are known to be satisfactory, nevertheless reagents and equipment from other sources may be equally suitable. All the reagents must be of analytical grade or better.

8.1

Chemicals

Methanol HPLC grade (Baker 8402)

Water HPLC grade (produced by EASYPURE)

Ammonium Acetate (BDH 271424C)

Acetonitrile (Baker 9017)

Acetic acid (Carlo Erba 401391)

, can be ordered from the sponsor.

Diclofenac Sodium internal standard

8.2	Solutions
8.2.1	Ammonium Acetate 2mM pH=4.75 (100% CH ₃ COOH):
	Weigh 154mg of Ammonium Acetate, add 800mL of water, adjusting to pH = 4.75 (± 0.1) with 100% Acetic Acid, transfer to a volumetric flask of 1000mL and adjust to the mark with water.
8.3	Standard solutions
8.3.1	Stock A:
	About 25 mg are transferred into a 25mL volumetric flask and dissolved with methanol obtaining a $1000\mu g/mL$ solution
8.3.2	Sol 7A:
	1.5mL Stock A are transferred into a 25mL volumetric flask and diluted with methanol obtaining a $60\mu g/mL$ solution.
8.3.3	Sol 6A:
	$2mL\ Sol\ 7A$ are transferred into a $50mL\ volumetric$ flask and diluted with methanol obtaining a $2.4\mu g/mL\ solution.$
8.3.4	Sol 5A:
	1.5mL Sol 7A are transferred into a 50mL volumetric flask and diluted with methanol obtaining a $1.8\mu g/mL$ solution.
8.3.5	Sol 4A:
	3mL Sol 5A are transferred into a 10mL volumetric flask and diluted with methanol obtaining a 0.54 μ g/mL solution.
8.3.6	Sol 3A:
	$3mL$ Sol 4A are transferred into a $10mL$ volumetric flask and diluted with methanol obtaining a $0.162\mu g/mL$ solution.
8.3.7	Sol 2A:
	$2mL$ Sol 4A are transferred into a $10mL$ volumetric flask and diluted with methanol obtaining a $0.108\mu g/mL$ solution.
8.3.8	Sol 1A:
	$1mL$ Sol 4A is transferred into a $10mL$ volumetric flask and diluted with methanol obtaining a $0.054\mu g/mL$ solution.

8.3.9

Sol XA:

1mL Stock A is transferred into a 20mL volumetric flask and diluted with methanol obtaining a $50\mu g/mL$ solution.

8.3.10

Sol YA:

1.7mL Sol 7A are transferred into a 50mL volumetric flask and diluted with methanol obtaining a $2.04\mu g/mL$ solution.

8.3.11

Stock ISTD:

About 25 mg of Diclofenac Sodium are transferred into a 25mL volumetric flask and dissolved with methanol obtaining a 1mg/mL solution.

8.3.12

ISTD:

0.5 ml Stock ISTD are transferred into a 100mL volumetric flask and diluted with methanol obtaining a $5\mu g/mL$ solution.

8.4

APPARATUS

Analytical balance

Mettler AT 261 Delta range or

equivalent

Evaporator

Pierce Reacti-Therm III or equivalent

HPLC

Agilent 1100 or equivalent API 2000 Applied Biosystem

Detector(MS/MS) Software Printer

Analyst 1.4 Applied Biosystem Hewlett-Packard LaserJet 2200

Column

Phenomenex Gemini 5µm C18 110A

2*150 mm

Centrifuge Vortex ALC 4214 or equivalent

New ZX VELP or equivalent

HPLC microvials

Eppendorff plastic tube 1.5mL

Volumetric pipettes Common glassware

9.

SAMPLING AND SAMPLES

Nature of the Sample; Samples shall be such as to enable the detection of residues in blood.

Size of Sample; The size of the sample must be large enough to allow the method to be carried out and to allow repeat analysis where required.

The samples must be taken and packed in such a way as to allow proper identification in the laboratory.

The method of packing, preservation and transport must maintain the integrity of the sample and not prejudice the results of the examination. Samples for the analysis of must be stored at temperatures below -18°C.

10.

PROCEDURE

10.1

Blank and unknown samples.

To $100\mu L$ of sample $300\mu L$ of Acetonitrile are added, vortexed and centrifuged for 5 minutes at 14000 rpm. Organic phase are collected, added $20\mu L$ of ISTD and evaporated to dryness under a gentle stream of nitrogen at about $37^{\circ}C$. Samples are reconstituted with $100\mu L$ of 70% Eluent A and 30% Eluent B and vortexed for 30 seconds. The liquid phase is transferred into glass HPLC vials and injected.

10.2

Calibration samples

To $100\mu L$ of rat plasma an adequate aliquot of working standard solution (see table below) is added.

Samples are then processed as previously described.

Concentrations obtained from the weighed amount of standard are corrected for the following percentage, as request by the Sponsor:

Name	Added	From solution	conce	entration	in mat	rix (ng/r	nL)	ISTD Concentration ng/mL
Std 1		Sol 1A	≈5	≈2.5	≈1	≈l	≈1	
Std 2		Sol 2A	≈11	≈5	≈2	≈3	≈2	
Std 3	201	Sol 3A	≈16	≈8	≈3	≈4	≈2	≈1000
Std 4	20μL	Sol 4A	≈53	≈25	≈10	≈13	≈8	≈1000
Std 5		Sol 5A	≈175	≈85	≈34	≈42	≈28	
Std 6		Sol 6A	≈234	≈113	≈46	≈56	≈37	

10.3

Accuracy and Precision samples (QC samples):

To 100 μ L of rat plasma an adequate aliquot of working standard solution (see table below) is added.

Samples are then processed as previously described.

Samples at 10000ng/mL are diluted with blank rat plasma 100-fold obtaining a final concentration of 100ng/mL.

Concentrations obtained from the weighed amount of standard are corrected for the following percentage, as request by the Sponsor:

Name	Added	From solution	co	ncentratio		rix (ng/ml		ISTD Concentration (ng/mL)
LLOQ		Sol 1A	≈5	≈2.5	≈1	≈l	≈l	
Medium QC		Sol 4A	≈53	≈25	≈10	≈13	≈8	:
Low QC	20μL	Sol 3A	≈l6	≈8	≈3	≈4	≈2	≈1000
High QC	,	Sol YA	≈199	≈96	≈39	≈47	≈31	
Extension level		Sol XA	≈4870	≈2350	≈950	≈1160	≈770	

10.4

LC-MS/MS and chromatographic conditions:

10.4.1

Chromatographic Conditions:

The following HPLC system is set up:

Phenomenex Gemini 5µm C18 110A Column:

2*150 mm

Column temperature

20°C

Mobile phase:

Eluent A:

Ammonium acetate 2mM pH=4.75

(100%

CH3COOH)

Eluent B: Elution:

Acetonitrile

Gradient

	Time (min.)	Flow (ml/min)	A %	В%
	0	0.2	70	30
	10	0.2	10	90
	15	0.2	10	90
	15.10	0.2	70	30
ı	25	0.2	70	30

Flow:

0.2 mL/min

Volume injects:

 $20 \mu L$

Autosampler temperature:

LC-MS/MS:

4°C

Scan Type:

Turbolon Spray, MRM

Polarity:

Negative

	Q1 Mass	Q3 Mass	Retention time minutes
	460.9	366.70	≈12.5
	460.9	201.1	≈12.3
	626.80	532.80	
	626.80	200.8	≈15.3
	626.80	366.80	
	577.00	482.60	
	577.00	200.80	≈14.4
	577.00	316.50	
	792.70	698.60	
	792.70	366.70	≈18.0
	792.70	532.70	
	743.00	648.80	
	743.00	201.10	- 17 6
	743.00	482.60	≈17.5
	743.00	366.60	

Diclofenac Sodium	Q1 Mass	Q3 Mass	Retention time
ICTD	294.10	250.00	11 7
1919	294.10	293.70	≈11.3

The LC-MS analysis is calibrated using the software Analyst which generates a linear fit calibration curve drawing the best fit of a line to the amounts of in ng/mL and the response factor peaks area (Std and ISTD). The software uses linear least-squares fit formula with a 1/X weighting. The result of the fitting is:

y = A + Bx

where

A = y-intercept of the calibration curve

B = Slope of the calibration curve

y = Response factor

x = amount in ng/mL

Unknown samples are injected after the LC-MS calibration. Results of the mount in ng/mL are obtained directly from the LC/MS report. The result is calculated by the software as:

x = (y-A)/B

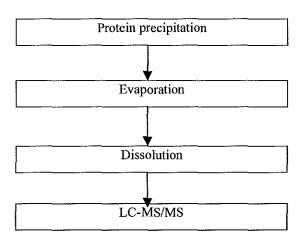
EXPRESSION OF RESULTS

contents in ng/mL are obtained directly from the chromatogram result table as follows:

C = x

Where:

C = content of as ng/mL


x = amount in ng/mL as read in the chromatogram result table

- 12. SPECIAL CASES
- 13. NOTES ON PROCEDURE
- 14. TEST REPORT

11.

SCHEMATIC REPRESENTATION OF PROCEDURE

16.

VALIDATION RESULTS

16.1

Linearity — MW=

Calibration samples in single at six levels ranging from about 5 ng/mL to 250 ng/mL were processed as described in the analytical method. The following correlation was found:

Added ng/mL	Response (Analyte area/ IS area)	Calculated Concentration (ng/mL)	Deviation %
5.5415	2.84e-002	5.3974	-2.60
11.083	3.48e-002	9.5196	-14.1
16.625	4.76e-002	17.693	6.43
55.415	1.19e-001	63,209	14.1
184.72	2.98e-001	178.21	-3.52
246.29	4.03e-001	245.64	-0.264

Equation:

Response = 0.02+0.00156*

0.9981

Response type: area Fit type:

Weighting:

linear 1/X

16.2

Selectivity (-- MW=

For blank plasma samples no interfering peaks were present at the retention times.

16.3

Accuracy and precision

16.3.1

(Low Level) (MW= MW=

Sextuplicates at the following concentrations were prepared and analysed:

Amount added	An	nount found	Accuracy	Precision
ng/mL	ng/mL	Mean (ng/mL)	%	CV %
	18.019			
	17.487	17.946	107.95	2.38
16.625	17.997			
10.023	18.642			
	18.033			
	17.498			
	N =6			

N: number of samples used for calculations.

16.3,2

(Medium Level) (MW-MW-

Sextuplicates at the following concentrations were prepared and analysed:

Amount added	An	nount found	Accuracy	Precision
ng/mL	ng/mL	Mean (ng/mL)	%	CV %
55.415	62.495 60.177 60.995 61.567 61.322 61.370	61.321	110.66	1.23
	N=6	<i>*</i> /-		

N: number of samples used for calculations.

16.3.3

Sextuplicates at the following concentrations were prepared and analysed:

Amount added	An	nount found	Accuracy	Precision
ng/mL	ng/mL	Mean (ng/mL)	%	CV %
	219.67 236.85			
209.35	206.43	214.46	102.44	676
209.33	217.84	214.46	102.44	6.76
	212.56			
	193.42			
	N =6			

N: number of samples used for calculations.

16.3.4

(Extension Level) (- MW=

Sextuplicates at the following concentrations were prepared and analysed:

Amount added	An	ount found	Accuracy	Precision
ng/mL	ng/mL	Mean (ng/mL)	%	CV %
	4397.6			
	4708.7		96.13	8.22
5131.0	5199.3	4932.7 96.13		
3131.0	5137.5			
	4669.2			
	5483.7			
	N =6			

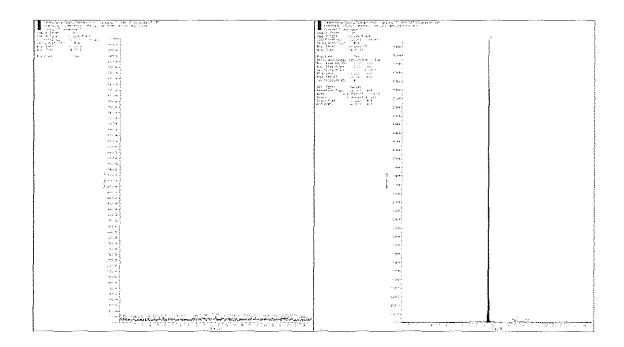
N: number of samples used for calculations.

16.4

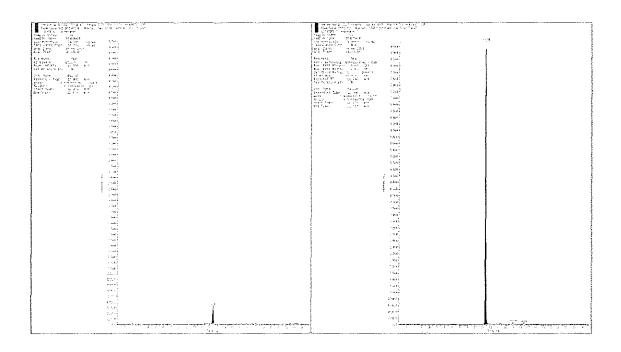
Lower Limit of Quantification (LLOQ)

The lowest standard on the calibration curve (5.5415 ng/mL) fulfilling the requirements for accuracy and precision will be considered as the Lower Limit of Quantification.

16.4.1


Sextuplicates at the following concentrations were prepared and analysed:

Amount added	An	ount found	Accuracy	Precision
ng/mL	ng/mL	Mean (ng/mL)	%	CV %
	4.7846			
	5.7921		90.45	9.66
5.5415	5.4189	5.0122		
),3 4 13	4.8233	5.0122		9.00
	4.5419			
	4.7123			
	N =6			


N: number of samples used for calculations.

16.5 Chromatogram of a blank plasma rat (M-MW=

17.

VALIDATION RESUTS (N3)

17.1

Linearity (MW- MW-

Calibration samples in single at six levels ranging from about 2 ng/mL to 120 ng/mL were processed as described in the analytical method. The following correlation was found:

Added	Response	Calculated	Deviation
ng/mL	(Analyte area/	Concentration	%
_	IS area)	(ng/mL)]
2.6740	2.06E-02	2.5582	-4.33
5.3481	3.52E-02	5.6827	6.26
8.0221	4.33E-02	7.4030	-7.72
26.740	1.43E-01	28.716	7.39
89.135	4.21E-01	88.171	-1.08
118.85	5.62E-01	118.23	-0.515

Equation Response: 0.00866+0.00468*

Response type:

area

0.9994

Fit type: Weighting: linear 1/X

17.2

Selectivity — MW=

For blank plasma samples no interfering peaks were present at the retention times.

17.3

Accuracy and precision

17.3.1

(Low Level) MW=

Sextuplicates at the following concentrations were prepared and analysed:

Amount found		Precision
Mean (ng/mL)	%	CV %
8.5426	106.49	2.49

N: number of samples used for calculations.

17.3.2

(Medium Level) — MW=

Sextuplicates at the following concentrations were prepared and analysed:

Amount added	Amount found		Accuracy	Precision
ng/mL	ng/mL	Mean (ng/mL)	%	CV %
	25.840	25.511	95.40	6.78
	27.778			
26.740	24.641			
20.740	23.775			
	27.243			
	23.791			
	N =6			

N: number of samples used for calculations.

17.3.3

(Highest Level) (- MW=

Sextuplicates at the following concentrations were prepared and analysed:

Amount added	Amount found		Accuracy	Precision
ng/mL	ng/mL	Mean (ng/mL)	%	CV %
101.02	99.759 113.24 90.040 97.151 101.86 91.187	98.873	97.88	8.54
	N =6			

N: number of samples used for calculations.

17.3.4

(Extension Level) — MW=

Sextuplicates at the following concentrations were prepared and analysed:

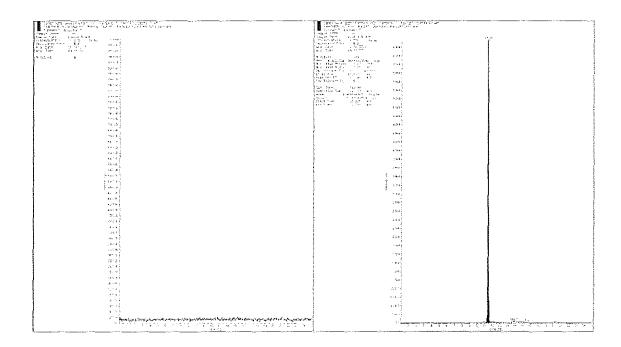
Amount added	Amount found		Accuracy	Precision
ng/mL	ng/mL	Mean (ng/mL)	%	CV %
	2119.1	2184.95	88.25	3.80
	2110.7			
2476.0	2214.3			
2	2315.9			
	2231.4			
	2118.3			
	N =6			

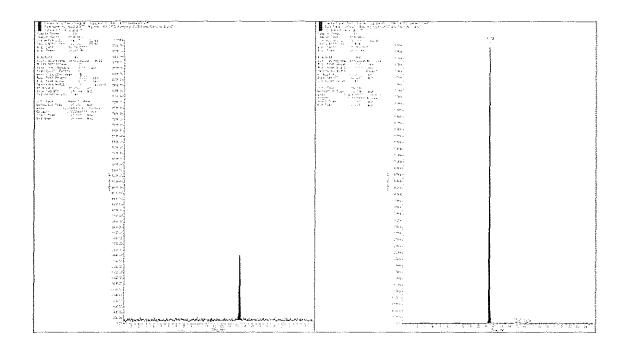
N: number of samples used for calculations.

17.4

Lower Limit of Quantification (LLOQ) (MW= MW=

The lowest standard on the calibration curve (2.6740 ng/mL) fulfilling the requirements for accuracy and precision will be considered the Lower Limit of Quantification.


17.4.1


Sextuplicates at the following concentrations were prepared and analysed:

Amount added	An	Amount found		Precision
ng/mL	ng/mL	Mean (ng/mL)	%	CV %
2.6740	2.3270 2.6339 2.6694 2.6038 2.4944 2.8923	2.6035	97.36	7.23
	N=6			

17.6 Chromatogram of a spiked plasma rat at approximately 8 ng/mL MW=MW=

18.

VALIDATION RESULTS

18.1

Linearity (- MW= - MW=

Single calibration samples at six levels ranging from about 1 ng/mL to 50 ng/mL were processed as described in the analytical method. The following correlation was found:

Added	Response	Calculated	Deviation
ng/mL	(Analyte area/	Concentration	%
	IS area)	(ng/mL)	
1.0810	3.00E-03	1.1074	2.44
2.1620	4,40E-03	2.1877	1.19
3.2430	5.82E-03	3.2888	1.41
10.810	1.48E-02	10.246	-5.22
36.033	4.67E-02	34.882	-3.20
48.044	6.59E-02	49.662	3.37

Equation:

Response = $0.00156 \pm 0.00129*$

Conc. 0.9993

Response type: area Fit type:

linear

Weighting:

1/X

18.2

For blank plasma samples no interfering peaks were present at the retention times.

18.3

Accuracy and precision

18.3.1

Sextuplicates at the following concentrations were prepared and analysed:

Amount added	Am	Amount found		Precision
ng/mL	ng/mL	Mean (ng/mL)	%	CV %
	3.3630			
	3.3856	3.2949	101.60	3.79
3.2430	3.4315			
3.2430	3.2653			
	3,2342			
	3.0899		ļ]
	N =6			

18.3.2

Sextuplicates at the following concentrations were prepared and analysed:

Amount added	An	Amount found		Precision
ng/mL	ng/mL	Mean (ng/mL)	%	CV %
-	12.209			
	12.114	11.672	107.97	4.21
10.810	11.411			
10.810	11.807			
	11.617			
	10.875			
	N=6			

N: number of samples used for calculations.

18.3.3

Sextuplicates at the following concentrations were prepared and analysed:

Amount added	Am	Amount found		Precision
ng/mL	ng/mL	Mean (ng/mL)	%	CV %
40.838	38.312 41.983 34.966 35.516 36.067 34.825	36.945	90.47	7.51
	N=6			

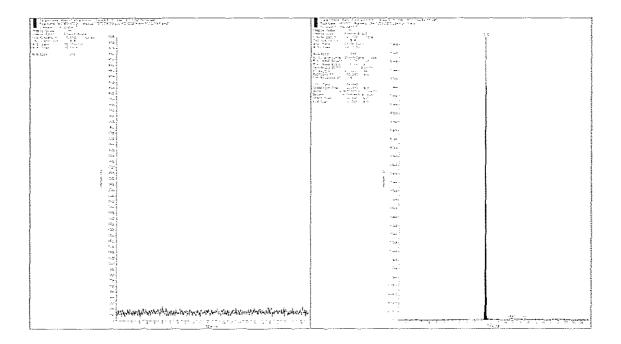
N: number of samples used for calculations.

18.3.4

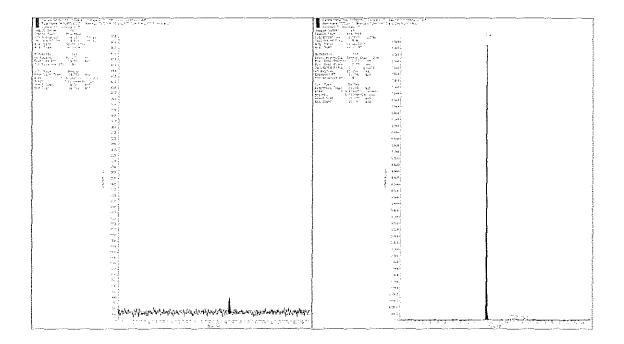
Sextuplicates at the following concentrations were prepared and analysed:

Amount added	Amount found		Accuracy	Precision
ng/mL	ng/mL	Mean (ng/mL)	%	CV %
	1004.1			
	1039.6	974.04	97.32	6.83
1000.9	859.19			
1000.9	1006.2			
	931.27			
	1003.9		l	
	N =6			

Lower Limit of Quantification (LLOQ) —— MW=


The lowest standard on the calibration curve (1.0810 ng/mL) fulfilling the requirements for accuracy and precision will be considered as the Lower Limit of Quantification.

18.4.1


Sextuplicates at the following concentrations were prepared and analysed:

Amount added	Am	Amount found		Precision
ng/mL	ng/mL	Mean (ng/mL)	%	CV %
1.0810	0.9127 1.0280 0.93807 0.94814 1.2206 0.94077	0.99805	92.33	11.61
	N =6			

18.5 Chromatogram of a blank plasma rat MW-MW-

18.6 Chromatogram of a spiked plasma rat at approximately 3 ng/mL (MW – MW

19.

VALIDATION RESULTS

19.1

Calibration samples in single at six levels ranging from about 1 ng/mL to 60 ng/mL were processed as described in the analytical method. The following correlation was found:

Added	Response	Calculated	Deviation
ng/mL	(Analyte area/	Concentration	%
	IS area)	(ng/mL)	
1.3200	5.44E-03	1,2038	-8.80
2.6399	9.90E-03	2.9416	11.4
3.9599	1.29E-02	4.1094	3.78
13.200	3.36E-02	12.176	-7.75
43.998	1.16E-01	44.303	0.693
58.664	1.54E-01	59.048	0.653

Equation:

Response = 0.00234+0.00257*

Conc.

0.9993 Response type: area

Fit type: Weighting: linear 1/X

19.2

For blank plasma samples no interfering peaks were present at the retention times.

19.3

Accuracy and precision

19,3.1

Sextuplicates at the following concentrations were prepared and analysed:

Amount added	Amount found		Accuracy	Precision
ng/mL	ng/mL_	Mean (ng/mL)	%	CV %
	4.2629	4.2663		
	4.2755		107.74	2.43
3.9599	4.3215			
3.9399	4.2502			
	4.0866			
	4.4008			
	N =6			

19.3.2

(Medium Level) — MW- MW- (Medium Level)

Sextuplicates at the following concentrations were prepared and analysed:

Amount added	An	Amount found		Precision
ng/mL	ng/mL	Mean (ng/mL)	%	CV %
	12.336			
	13.296	12.589	95.37	5.59
13.200	11.630			
13.200	11.982			
	13.093			
	13.195			
	N=6			

N: number of samples used for calculations.

19.3.3

(Highest Level) MW=MW=

Sextuplicates at the following concentrations were prepared and analysed:

Amount added	An	Amount found		Precision
ng/mL	ng/mL	Mean (ng/mL)	%	CV %
	44.614	46.090		7.26
	52.486		92.43	
49.865	43.682			
1	45.674		,	
	46.587			
	43.497			
	N=6			

N: number of samples used for calculations.

19.3.4

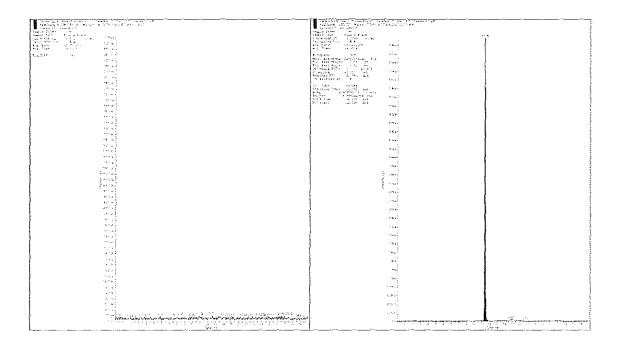
(Extension Level) — MW=

Sextuplicates at the following concentrations were prepared and analysed:

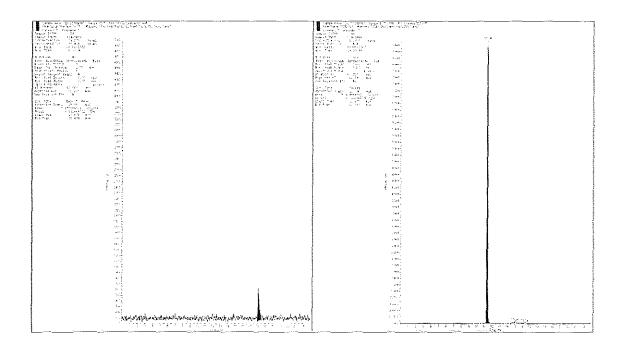
Amount added	Amount found		Accuracy	Precision
ng/mL	ng/mL	Mean (ng/mL)	%	CV %
	1376.3			
	1377.4	1204.2	98.52	11.33
1222.2	1080.2			
1222.2	1109.7			
	1117.9			
	1163.5			
	N =6			

Lower Limit of Quantification (LLOQ) — MW-

The lowest standard on the calibration curve (1.3200 ng/mL) fulfilling the requirements for accuracy and precision will be considered as the Lower Limit of Quantification.


19.4.1

Sextuplicates at the following concentrations were prepared and analysed:


Amount added	An	Amount found		Precision	
ng/mL	ng/mL	Mean (ng/mL)	%	CV %	
	1.2470			7.11	
	1.2584				
1.3200	1.1957	1.3139	99.54		
1.3200	1.3730	1.3139	99.54		
	1.3715			1	
	1.4375	<u> </u>			
	N =6				

19.5 Chromatogram of a blank plasma rat (MW-MW-

19.6 Chromatogram of a spiked plasma rat at approximately 4 ng/mL — MW=

20.

VALIDATION RESULTS

20.1

Linearity — MW=

Calibration samples in single at six levels ranging from about 1 ng/mL to 40 ng/mL were processed as described in the analytical method. The following correlation was found:

Added	Response	Calculated	Deviation
ng/mL	(Analyte area/	Concentration	%
•	IS area)	(ng/mL)	
0.87617	6.32E-03	0.78661	-10.2
1.7523	1.02E-02	1.8726	6.86
2.6285	1.33E-02	2.7491	4.59
8.7617	3.43E-02	8.6386	-1.41
29.206	1.09E-01	29.498	1.00
38.941	1.41E-01	38.621	-0.823

Equation:

Response = 0.00352+0.00356*

Conc.

0.9998

Response type: area Fit type: Weighting:

linear 1/X

20.2

For blank plasma samples no interfering peaks were present at the etention times.

20.3

Accuracy and precision

20.3.1

(Low Level) — MW=

Sextuplicates at the following concentrations were prepared and analysed:

Amount added	Am	ount found	Accuracy	Precision	
ng/mL	ng/mL	Mean (ng/mL)	%	CV %	
	2.8893				
	2.4930			9.38	
2,6285	2.2794	2.6012	98.96		
2.0203	2.8361	2.0012	78.70		
	2.6955		Ì	1	
	2.4138				
	N =6				

20.3.2

(Medium Level) — MW=

Sextuplicates at the following concentrations were prepared and analysed:

Amount added	Amount found		Accuracy	Precision
ng/mL	ng/mL	Mean (ng/mL)	%	CV %
8.7617	9.7568 9.4218 9.7209 10.066 9.5491 9.6688	9.6972	110.68	2.25
	N =6			

N: number of samples used for calculations.

20.3.3

(Highest Level) — MW=

Sextuplicates at the following concentrations were prepared and analysed:

Amount added	An	ount found	Accuracy	Precision
ng/mL	ng/mL	Mean (ng/mL)	%	CV %
33.100	31.142 33.540 30.338 30.767 31.298 28.709	30.966	93.55	5.06
	N=6			

N: number of samples used for calculations.

20.3.4

(Extension Level) - MW-

Sextuplicates at the following concentrations were prepared and analysed:

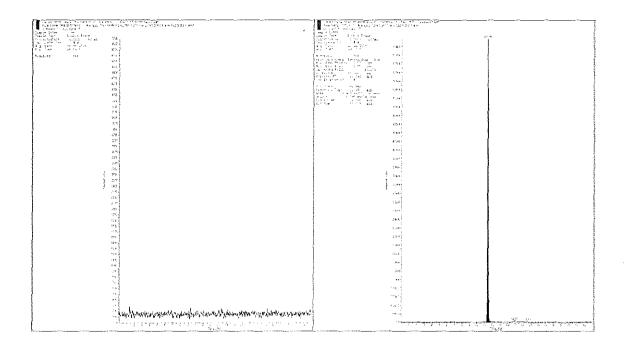
Amount added	Am	ount found	Accuracy	Precision
ng/mL	ng/mL	Mean (ng/mL)	%	CV %
811.27	740.62 709.40 733.32 902.32 865.16 773.23	787.34	97.05	9,94
	N=6			

20.4

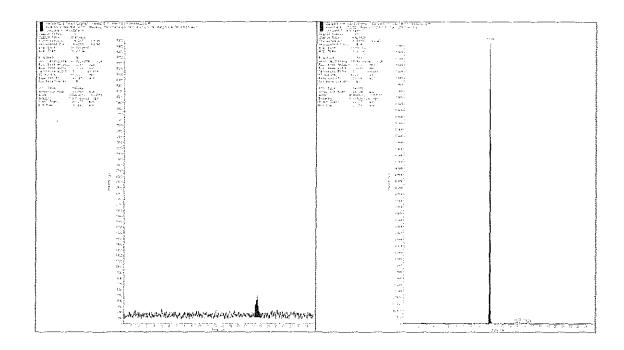
Lower Limit of Quantification (LLOQ) — MW-

The lowest standard on the calibration curve (0.87617 ng/mL) fulfilling the requirements for accuracy and precision will be considered as the Lower Limit of Quantification.

20.4.1



Sextuplicates at the following concentrations were prepared and analysed:


Amount added	Am	Amount found		Precision
ng/mL	ng/mL	Mean (ng/mL)	%	CV %
	0.85838			5.37
	0.87324	0.83903		
0.87617	0.82732		95.76	
0.87017	0.77801		95./0	
	0.80079			
	0.89631	_		
	N =6			

20.5 Chromatogram of a blank plasma rat MW-MW-

Toxicokinetic	analysis	-	Plasma	levels	of '	
roto						

(ng/ml) following oral administration of

(2.0 mg/kg) to male

rats

STUDY NO.:

Animal No.	Sampling times (hours post-dose)								
	0	2	4	6	8	24	48	168	216
367100062 367100064 367100066 367100068 367100070 367100072 367100074 367100076 367100078	BLOQ BLOQ BLOQ	198.45 D 155.69 D 227.64 D	272.82 D 51.762 D+ 197.66 D	334.38 D 358.60 D 305.38 D	347.29 D 333.65 D 318.77 D	270.06 D 417.51 D 423.02 D	352.73 D 274.21 D 374.31 D	226.83 D 298.65 D 275.77 D	274.02 D 283.70 D 336.99 D
MEAN	0	193.93	235.24	332.79	333.24	370.20	333.75	267.08	298.24
SD CV %	0 0	36.188 18.66	37.58 15.98	26.646 8.01	14.264 4.28	86.765 23.44	52.68 15.78	36.69 13.74	33.909 11.37

^{+ =} Values giving a CV > 50% were not included in the calculation of mean, standard deviation and CV (coefficient of variation)

BLOQ = below the limit of quantitation

D = diluted sample

Toxicokinetic analysis - Plasma levels of	(ng/ml) following oral administration of (2.0 mg/kg) to female
rats	

STUDY NO.:

Animal No.	Sampling times (hours post-dose)								
	0	2	4	6	8	24	48	168	216
36710061 36710063 36710065 36710067 36710069 36710071 36710073 36710075 36710077	BLOQ BLOQ BLOQ	226.84 D 219.66 D 460.15 D	219.27 D 262.80 D 245.32 D	299.87 D 286.84 D 264.54 D	351.20 D 272.03 D 312.69 D	443.95 D 406.66 D 291.57 D	27.695 D +@ 273.33 D 276.44 D	724.52 D@ 290.72 D 402.21 D	327.04 D 222.99 D 211.62 D
Mean	0	302.22	242.46	283.75	311.97	380.73	274.89	472.48	253.88
SD	0	136.82	21.905	17.867	39.59	79.431	N/C	225.28	63.61
CV%	0	45.27	9.03	6.30	12.69	20.86	N/C	47.68	25.06

⁺ = Values giving a CV > 50% were not included in the calculation of mean, standard deviation and CV (coefficient of variation) BLOQ = below the limit of quantitation N/C = Not calculable due to low number of samples

D = diluted sample

^{@ =} Estimated samples since concentration was out of validation range

Toxicokinetic analysis - Plasma levels of rats

(ng/ml) following oral administration of

(2.0 mg/kg) to male

STUDY NO.:

Animal No.		Sampling times (hours post-dose)								
	0	2	4	6	8	24	48	168	216	
367100062 367100064 367100066 367100070 367100072 367100074 367100076 367100078	BLOQ BLOQ BLOQ	87.360 D 71.018 D 111.58 D	128.45 D 23.363 D + 71.903 D	113.81 D 142.92 D 114.89 D	125.80 D 124.01 D 117.50 D	80.697 D 135.25 D 156.93 D	114.51 D 91.774 D 146.98 D	69.159 D 99.273 D 105.46 D	85.463 D 85.350 D 98.285 D	
MEAN	0	89.986	100.18	123.87	122.44	124.29	117.75	91.297	89.699	
SD	0	20.408	N/C	16.504	4.368	39.28	27.746	19.42	7.4356	
CV %	0	22.68	N/C	13.32	3.57	31.60	23.56	21.27	8.29	

⁺ = Values giving a CV > 50% were not included in the calculation of mean, standard deviation and CV (coefficient of variation) BLOQ = below the limit of quantitation

D = diluted sample

N/C = Not calculable due to low number of samples

Toxicokinetic analysis - P	Plasma levels of	(ng/ml) followi	ng oral administration of	(2	.0 mg/kg) to female
rats		- ·		`	S 2,

STUDY NO.:

Animal No.				Sampling	g times (hours j	post-dose)			
	0	2	4	6	8	24	48	168	216
367100061 367100063 367100065 367100067 367100069 367100071 367100073 367100075 367100077	BLOQ BLOQ BLOQ	91.680 D 111.55 D 169.50 D	94.877 D 94.685 D 113.98 D	106.50 D 119.92 D 109.39 D	115.97 D 122.81 D 134.02 D	168.59 D 173.82 D 139.76 D	10.901 D + 114.74 D 86.232 D	222.77 D 102.47 D 122.41 D	83.530 D 71.525 D 68.156 D
MEAN	0	124.24	101.18	111.94	124.27	160.72	100.49	149.22	74.404
SD	0	40.433	11.085	7.0632	9.1127	18.342	N/C	64.475	8.0812
CV %	0	32.54	10.96	6.31	7.33	11.41	N/C	43.21	10.86

⁺ = Values giving a CV > 50% were not included in the calculation of mean, standard deviation and CV (coefficient of variation) BLOQ = below the limit of quantitation N/C = Not calculable due to low number of samples D = diluted sample

^{@ =} Estimated samples since concentration was out of validation range

Toxicokinetic analysis - Plasma levels of (2.0 mg/kg) to male rats

STUDY NO.:

Animal No.				Sampling	times (hours p	ost-dose)			
	0	2	4	6	8	24	48	168	216
367100062 367100064 367100066 367100070 367100072 367100074 367100076 367100078	BLOQ BLOQ BLOQ	3740.1 D@ 2639.1 D@ 3983.7 D@	3993.2 D@ 610.10 D + 2885.3 D@	4246.0 D@ 4519.3 D@ 3979.1 D@	3908.0 D@ 4008.6 D@ 3726.3 D@	3665.2 D@ 5087.8 D@ 4883.2 D@	4108.3 D@ 3585.9 D@ 4457.8 D@	2350.1 D@ 3414.4 D@ 3779.5 D@	3436.4 D@ 3576.0 D@ 3610.5 D@
MEAN	0	3454.3	3439.25	4248.1	3881.0	4545.4	4050.7	3181.3	3541.0
SD	0	716.41	N/C	270.11	143.08	769.11	438.8	742.65	92.186
CV %	0	20.74	N/C	6.36	3.69	16.92	10.83	23.34	2.60

^{+ =} Values giving a CV > 50% were not included in the calculation of mean, standard deviation and CV (coefficient of variation)

BLOQ = below the limit of quantitation

N/C = Not calculable due to low number of samples

D = diluted sample

@ = Estimated samples since concentration was out of validation range

Toxicokinetic analysis - Plasma levels of (mg/ml) following oral administration of (mg/ml) following oral administration of (mg/ml) following oral administration of (mg/ml) following oral administration of (mg/ml) following oral administration of (mg/ml) following oral administration of (mg/ml) following oral administration of (mg/ml) following oral administration of (mg/ml) following oral administration of (mg/ml) following oral administration of (mg/ml) following oral administration of (mg/ml) following oral administration of (mg/ml) following oral administration of (mg/ml) following oral administration of (mg/ml) following oral administration of (mg/ml) following oral administration of (mg/ml) following oral administration of (mg/ml) following oral administration or (mg/ml) following oral administration or (mg/ml) following oral administration or (mg/ml) following oral administration or (mg/ml) following oral administration or (mg/ml) following oral administration or (mg/ml) following oral administration or (mg/ml) following oral administration or (mg/ml) following or (mg/ml) following oral administration or (mg/ml) following oral administration or (mg/ml) following oral administration or (mg/ml) following oral administration or (mg/ml) following oral administration or (mg/ml) following

STUDY NO.:

Animal No.				Sampling	times (hours p	ost-dose)			
	0	22	4	6	8	24	48	168	216
367100061 367100063 367100065 367100067 367100069 367100071 367100073 367100077	BLOQ BLOQ BLOQ	3872.9 D@ 3892.7 D@ 5978.3 D@	3355.3 D@ 4056.8 D@ 3431.4 D@	3591.0 D@ 3365.2 D@ 3801.1 D@	4082.3 D@ 3541.0 D@ 3433.9 D@	2634.5 D 2540.1 D 1753.8 D	129.97 D + 697.68 D 804.80 D	1841.4 D + 112.37 D 65.342 D@	180.72 D@ 143.68 D@ 109.57 D@
MEAN	0	4581.3	3614.5	3585.8	3685.7	2309.5	751.24	88.86	144.66
SD	0	1209.9	384.93	218	347.59	483.53	N/C	N/C	35.585
CV %	0	26.41	10.65	6.08	9.43	20.94	N/C	N/C	24.60

⁺ = Values giving a CV > 50% were not included in the calculation of mean, standard deviation and CV (coefficient of variation)

BLOQ = below the limit of quantitation

N/C = Not calculable due to low number of samples

D = diluted sample

^{@ =} Estimated samples since concentration was out of validation range

Toxicokinetic analysis - Plasma levels of

(ng/ml) following oral administration of

(2.0 mg/kg) to male

rats

STUDY NO.:

Animal No.				Sampling	times (hours p	oost-dose)			
	0	2	4	6	8	24	48	168	216
								!	!
367100062	BLOQ		610.91 D			490.64 D			
367100064	BLOQ		52.358 D +			803.64 D			,
367100066	BLOQ		365.26 D		}	773.47 D		}	1
367100068		401.62 D			575.61 D			421.93 D	
367100070		330.30 D			580.95 D			588.03 D	
367100072		483.01 D			526.60 D	1		537.81 D	
367100074				592.06 D		<u> </u>	672.71 D		502.11 D
367100076				662.64 D			529.57 D		527.52 D
367100078				547.87 D			717.57 D		532.05 D
MEAN	0	404.98	488.09	600.86	561.05	689.25	639.95	515.92	520.56
SD	0	76,410	N/C	57.888	29.957	172.66	98.188	85.186	16.138
CV %	0	18.87	N/C	9.63	5.34	25.05	15.34	16.51	3.10

⁺ = Values giving a CV > 50% were not included in the calculation of mean, standard deviation and CV (coefficient of variation)

BLOQ = below the limit of quantitation

D = diluted sample

N/C = Not calculable due to low number of samples

Toxicokinetic analysis - Plasma levels of the control of the contr

STUDY NO.:

Animal No.				Sampling	times (hours)	post-dose)			
	0	2	4	6	8	24	48	168	216
1									
367100061	BLOQ		428.06 D	1		785.91 D			
367100063	BLOQ		504.46 D			757.38 D		•	
367100065	BLOQ		487.53 D			582.84 D	}	!	
367100067		479.71 D		į	572.51 D		}	1199.9 D	
367100069		491.71 D			478.95 D			462.11 D	
367100071		831.97 D			528.48 D			659.40 D	
367100073		}		496.46 D	}		26.422 D + @		509.47 D
367100075			}	527.13 D)	}	497.41 D		385.93 D
367100077				458.37 D			442.23 D		341.14 D
[Í	<u> </u>	[
MEAN	0	601.13	473.35	493.99	526.65	708.71	469.82	773.8	412.18
SD	0	200.00	40.125	34.447	46.807	109.94	N/C	381.97	87.181
CV %	0	33.27	8.48	6.97	8.89	15.51	N/C_	49.36	21.15

⁺ = Values giving a CV > 50% were not included in the calculation of mean, standard deviation and CV (coefficient of variation)

BLOQ = below the limit of quantitation N/C =

N/C = Not calculable due to low number of samples

D = diluted sample

^{@ =} Estimated samples since concentration was out of validation range

Toxicokinetic analysis - Plasma levels of the control of the contr

STUDY NO.

Animal No.				Sampling	times (hours p	oost-dose)			
	0	2	4	6	8	24	48	168	216
367100062	BLOQ	(225.72 D			123.49 D		<u>"</u>	
367100064	BLOQ	}	19.703 D +		}	202.99 D		1	Ì
367100066	BLOQ		132.50 D			238.7 D			
367100068		109.93 D			174.67 D			86.516 D	
367100070		91.728 D			181.71 D			114.77 D	,
367100072		176.81 D			190.45 D		}	133.95 D	
367100074				192.85 D			176.32 D	'	82.499 D
367100076				224.66 D			132.5 D		84.915 D
367100078				173.11 D			221.07 D		113.91 D
MEAN	0	126.16	179.11	196.87	182.28	188.39	176.63	111.75	93.775
SD	0	44.802	N/C	26.009	7.9052	58.976	44.286	23.861	17.48
CV %	0	35.51	N/C	13.21	4.34	31.31	25.07	21.35	18.64

^{+ =} Values giving a CV > 50% were not included in the calculation of mean, standard deviation and CV (coefficient of variation)

BLOQ = below the limit of quantitation

D = diluted sample

N/C = Not calculable due to low number of samples

Toxicokinetic analysis - Plasma levels of the second of th (2.0 mg/kg) to female rats

STUDY NO.:

Animal No.				Samplin	No. Sampling times (hours post-dose)									
	0	2	4	6	8	24	48	168	216					
367100061 367100063 367100065 367100067 367100071 367100073 367100075 367100077	BLOQ BLOQ BLOQ	149.91 D 153.27 D 269.28 D	171.30 D 169.55 D 209.91 D	168.77 D 188.72 D 148.40 D	194.63 D 182.27 D 198.66 D	250.66 D 266.05 D 187.36 D	13.844 D + 129.08 D 108.22 D	266.49 D + 101.56 D 118.98 D	78.458 D 85.968 D 61.082 D					
MEAN	0	190.82	183.59	168.63	191.85	234.69	118.65	110.27	75.169					
SD	0	67.969	22.813	20.16	8.5405	41.705	N/C	N/C	12.765					
CV %	0	35.62	12.43	11.96	4.45	17.77	N/C	N/C	16.98					

⁺ = Values giving a CV > 50% were not included in the calculation of mean, standard deviation and CV (coefficient of variation) BLOQ = below the limit of quantitation

D = diluted sample

N/C = Not calculable due to low number of samples

Toxicokinetic analysis - Toxicokinetic parameters

STUDY NO.:

Males

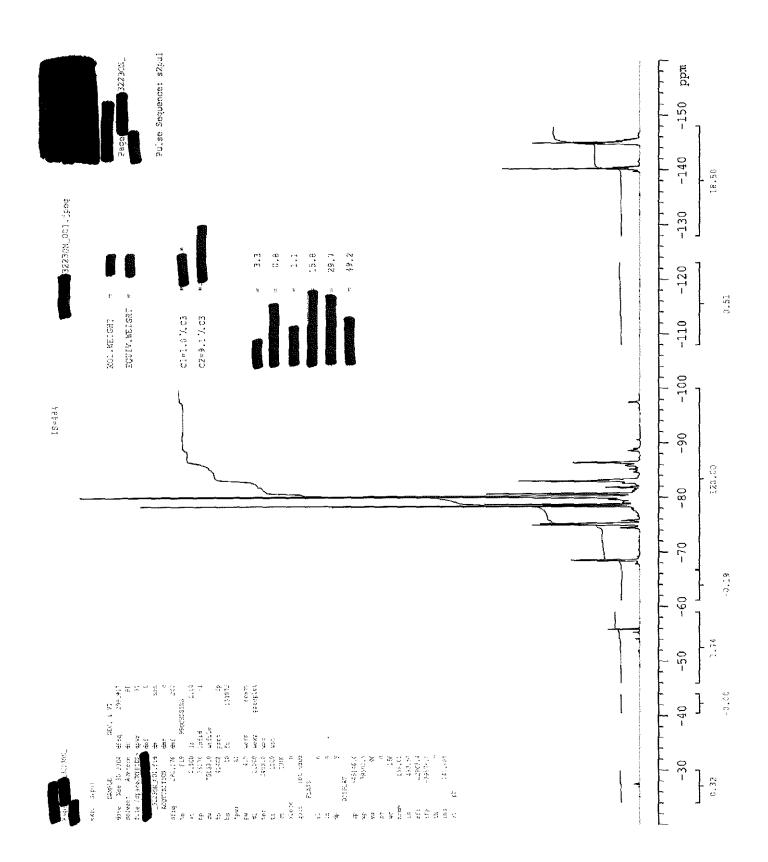
1										
Dose level (mg/kg)	t _{max} (h)	C _{max} (ng/ml)	*T ½ (h)	*AUC ₍₂₄₋₂₁₆₎ (ng/ml·h)	*AUC _(inf) (ng/ml·h)					
	24	370.2	544	65550	299662					
	t _{max} (h)	C _{max} (ng/ml)	*T ½ (h)	*AUC ₍₂₄₋₂₁₆₎ (ng/ml·h)	*AUC _(inf) (ng/ml·h)					
	24	124.3	385	22516	72388					
1										
2.0	t _{max} (h)	C _{max} (ng/ml)	*T ½ (h)	*AUC ₍₂₄₋₂₁₆₎ (ng/ml·h)	*AUC _(inf) (ng/ml·h)					
	24	4545.4	481	791984	3249932					
	t _{max} (h)	C _{max} (ng/ml)	*T ½ (h)	*AUC ₍₂₄₋₂₁₆₎ (ng/ml·h)	*AUC _(inf) (ng/ml·h)					
	24	689.3	454	123729	464508					
	t _{max} (h)	C _{max} (ng/ml)	*T ½ (h)	*AUC ₍₆₋₂₁₆₎ (ng/ml·h)	*AUC _(inf) (ng/ml·h)					
	6	196.9	201	30768	57915					

^{*} Calculated from t_{max}

Toxicokinetic analysis - Toxicokinetic parameters

STUDY NO.:

Females


Omaios					
Dose level (mg/kg)	t _{max} (h)	C _{max} (ng/ml)	°T ½ (h)	°AUC ₍₂₄₋₂₁₆₎ (ng/ml·h)	°AUC _(inf) (ng/ml·h)
	168	472.5	2185	77653	877949
	t _{max} (h)	C _{max} (ng/ml)	*T ½ (h)	*AUC ₍₂₄₋₂₁₆₎ (ng/ml·h)	*AUC _(inf) (ng/ml·h)
	24	160.7	346	26563	63751
2.0	t _{max} (h)	C _{max} (ng/ml)	*T ½ (h)	*AUC ₍₂₋₂₁₆₎ (ng/ml·h)	*AUC _(inf) (ng/ml·h)
	2	4581.3	39	167950	176042
	t _{max} (h)	C _{max} (ng/ml)	°T ½ (h)	°AUC ₍₂₄₋₂₁₆₎ (ng/ml·h)	°AUC _(inf) (ng/ml·h)
	168	773.8	763	130770	584697
	t _{max} (h)	C _{max} (ng/ml)	*T ½ (h)	*AUC ₍₂₄₋₂₁₆₎ (ng/ml·h)	*AUC _(inf) (ng/ml·h)
	24	234.7	160	27116	44431

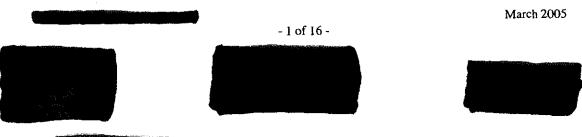
^{*} Calculated from t_{max}
° Calculated from 24 hours

ADDENDUM V - Certificate of analysis

STUDY NO.:

ADDENDUM VI - Study protocol

STUDY NO.:



Final Protocol prepared for

by

Volume II

Page 216

1. INTRODUCTION

1.1 Objective

The purpose of this study is to evaluate the toxicity of the study of a study or a study

1.2 Species

The Sprague Dawley rat is the species and strain of choice because it is accepted by many regulatory authorities and there is ample experience and background data on this species and strain.

1.3 Route of administration

The test item will be administered by oral route. The oral route has been selected as it is a possible route of exposure of the test item in man.

1.4 Regulatory compliance

This study will be conducted in compliance with the GLP regulations of:

- Commission Directive 1999/11/EC of 8 March 1999 (adoption of the "OECD principles on Good Laboratory Practice as revised in 1997") and subsequent revisions.
- Decreto Legislativo no. 120 of 27 January 1992 and subsequent revisions.

This study design is in agreement with the procedures described in OECD Guideline no. 407 adopted 27 July 1995 and with those described by Japanese METI (Ministry of Economy, Trade and Industry) of 13 July 1974 and subsequent revisions.

The Sponsor has required the testing activity on this substance to develop notification/submission to regulatory authorities and produce a safety assessment for production and uses.

Procedures and facilities will comply with the requirements of Commission Directive 86/609/EEC concerning the protection of animals used for experimental and other scientific purposes. National legislation, harmonising with this Directive, is defined in Decreto Legislativo No. 116 of 27 January 1992. Aspects of the protocol concerning animal welfare have been approved by the Company's Ethical Committee.

March 2005

2. TEST ITEM

2.1 Characterisation

It will be the responsibility of the Sponsor to determine, for each batch of test item, the identity, strength, purity and composition, or other characteristics which appropriately define the test item, before its use in the study. The determination of the stability of the test item will also be the Sponsor's responsibility.

A certificate of analysis for the test item should also be supplied.

2.2 Identity

The test item will be

The following information refers to the original batch of test item received for the study:

Batch Number: 90409-86-I
Date of expiry: 01 January 2015

Appearance : Storage conditions : Ambient

Should further batches be required to complete the study, full details of batch usage will be maintained in the formulation records but protocol amendments will not be issued.

The amount of the test item received and used at will be recorded according to standard procedures.

2.3 Safety precautions

The precautions necessary when handling either the test item or prepared formulations of the test item are based on information supplied by the Sponsor. The minimum safety precautions necessary are detailed under the Hazard Classification System, according to the Standard procedures.

2.4 Vehicle

The vehicle will be

2.5 Formulation procedure

The required amount of which will be dissolved in the vehicle. The formulations will be prepared daily (concentrations of 0.03, 0.08 and 0.20 mg/ml). Concentrations will be calculated and expressed in terms of test item as supplied.

2.6 Formulation analysis

Analysis will be performed to confirm that the proposed formulation procedure is acceptable and the stability of formulation is satisfactory.

Samples of the formulations prepared in weeks 1 and 4 of the study will also be analysed to check the concentration. Chemical analysis will be carried out by the Analytical Chemistry Department at additional cost).

March 2005

2.7 Disposal

Approximately 1 year after the final report has been issued, remaining amounts of the test item, with the exception of the reserve samples taken for archival purposes, will be returned to the Sponsor.

3. TEST SYSTEM

3.1 Animal supply and acclimatisation

A total of 90 Hsd Sprague Dawley rats (45 males and 45 females), 27-29 days old and within a weight range of approximately 75-99 g, will be obtained from

After arrival the weight range for each sex will be determined and the animals will be temporarily identified within the cage by means of a coloured mark on the tail. A health check will then be performed by a veterinarian.

An acclimatisation period of approximately 2 weeks will be allowed before the start of treatment, during which time the health status of the rats will be assessed by thorough observations. Rats considered unsatisfactory will be killed and where appropriate subjected to pathological examination. Unsatisfactory batches of animals will be rejected before the start of treatment.

3.2 Animal husbandry

The animals will be housed in a limited access rodent facility. Animal room controls will be set to maintain temperature and relative humidity at 22°C ± 2°C and 55% ± 15% respectively; actual conditions will be monitored, recorded and the records retained. There will be approximately 15 to 20 air changes per hour and the rooms will be lit by artificial light for 12 hours each day.

The animals will be housed up to 5 of one sex to a cage, in clear polycarbonate cages measuring 59x38.5x20 cm with a stainless steel mesh lid and floor (). Each cage tray will hold absorbent paper which will be inspected and changed at least 3 times a week.

Drinking water will be supplied ad libitum to each cage via water bottles, except as noted in section 4.3.

A commercially available laboratory rodent diet will be offered ad libitum throughout the study, except as noted in section 4.3.

There is no information available to indicate that any non-nutrient substance likely to influence the effect of the test item is present in the drinking water or the diet. Records of analyses of water and diet are kept on file at

Dated and signed records of activities relating to the day to day running and maintenance of the study in the animal house will be recorded in a Study Day Book.

3.3 Allocation to groups

On the day of allocation (about 7 days prior to the start of treatment) all animals will be weighed. Animals at the extremes of the weight distribution and/or any animal showing signs of ill health will be excluded to leave the required number of animals. The rats will be allocated to the 5 groups by computerised stratified randomisation to give approximately equal initial group mean body weights.

Individuals will be uniquely identified within the study by sex, tattoo on the hind feet, and ear notch and housed up to 5 of one sex per cage.

The cages will be identified by a label and recording the study number, animal numbers and details of treatment.

The arrangement of cages in batteries will be such that cages from each main group will be evenly distributed across the battery (Annex 2) to minimise possible environmental effects. Any animal showing signs of ill health during the period between allocation and the start of treatment will be subjected to pathological examination as considered appropriate, and replaced with a surplus animal selected from the same batch.

4. EXPERIMENTAL PROCEDURE

4.1 Treatment

4.1.1 Selection of dose levels

Dose levels have been selected in consultation with the Sponsor based on information from preliminary studies.

4.1.2 Dose levels, group size and identification

Each main group will comprise 5 male and 5 female rats. Control and high dose groups will include 5 additional animals per sex to be sacrificed after 2 weeks of recovery. One satellite group for toxicokinetics will comprise 9 male and 9 female animals. The group identification and animal numbers assigned to the treatment are summarised below:

MAIN GROUPS

Group	Treatment	Level	Main phase			umbers cry phase
Number:	(mg/kg/day)+		M	F	M	F
			(even)	(odd)	(even)	(odd)
ì	0.0	Control	2 - 10	1 - 9	12 - 20	11 - 19
2	0.3	Low	22 - 30	21 - 29		
3	0.8	Medium	32 - 40	31 - 39		
4	2.0	High	42 - 50	41 - 49	52 - 60	51 - 59
+: in term	s of test item as	supplied				

SATELLITE GROUP

ſ	Group	Treatment		Rat n	umbers
	Number:	(mg/kg)+	Level	Males (even)	Females (odd)
I	5	2.0	High	62 - 78	61 - 7?
Ţ	+: in terms of to	est item as supplie	:d		

The rat numbers listed above will form the last digits of a computer generated 8 figure animal number (the remaining digits of the animal number will be different for each concurrent study and will serve to ensure unique animal numbering for any study employing computerised data collection). The computerised system used in this study will be the Xybion Path/Tox System, version 4.2.2.

4.1.3 Administration of test item

The test item will be administered orally, by gavage, at a dose volume of 10 ml/kg body weight. Control animals will receive the vehicle alone at the same dose volume.

The dose will be administered to each animal on the basis of the most recently recorded body weight and the volume administered will be recorded for each animal.

4.1.4 Duration of treatment

All main group animals will be dosed once a day, 7 days a week, for a minimum of 4 consecutive weeks followed by a recovery period of 2 weeks for 5 males and 5 females from groups 1 and 4. Satellite group animals will be dosed once only.

All animals from the main groups will be dosed up until the day before necropsy.

No treatment will be given during the recovery period.

4.2 In vivo observations

Full records will be maintained for all measurements and observations.

4.2.1 Mortality

Throughout the study, all animals will be checked early in each working day early in the morning and in the afternoon. At weekends and Public Holidays a similar procedure will be followed except that the final check will be carried out at approximately mid-day. This will allow post mortem examinations to be carried out during the working period of that day. Severely debilitated animals will be observed carefully. Animals judged to be in-extremis will be killed. A complete necropsy will be performed in all cases as detailed in section 5.4.2 below.

4.2.2 Pre- and post-dose observations (Main groups)

All observations will be recorded for individual animals.

Examination of individual animals for signs of reaction to treatment will be carried out daily prior to dosing and at suitable intervals after dosing. The number and timing of these daily observations will be reviewed by the Study Director at the end of the first week of treatment and, if appropriate, at subsequent intervals.

The number of observations may be reduced, but all animals will be observed at least three times daily during treatment. If more than three daily observations are required after the first week of treatment, an additional cost may be incurred.

4.2.3 Clinical signs and neurotoxicity assessment (Main groups)

Once before commencement of treatment and at least once per week from the start of treatment, each animal will be given a detailed clinical examination. Each animal will be observed in an open arena. The test will include observation of changes in gait and posture, reactivity to handling, presence of clonic or tonic movements, stereotypies or bizarre behaviour and effects on the autonomic nervous system (e.g. lachrymation, piloerection, unusual respiratory pattern).

Once during week 4 of treatment and once during week 2 of recovery an evaluation of sensory reactivity to stimuli of different modalities (e.g. auditory, visual and proprioceptive stimuli) and an assessment of grip strength will also be performed.

4.2.4 Motor activity assessment (MA) (Main groups)

The motor activity (MA) of all animals will be measured once during week 4 of treatment and once during week 2 of recovery by an automated activity recording. Measurements will be performed using a computer generated random order.

4.2.5 Body weight

Each animal will be weighed on the day of allocation to treatment groups, on the day that treatment commences, weekly thereafter and just prior to necropsy. Satellite group animals will be weighed only on the day of dosing.

4.2.6 Food consumption (Main groups)

The weight of food consumed by each cage of rats will be recorded at weekly intervals following allocation. The group mean daily intake per rat will be calculated.

4.3 Clinical pathology investigations (Main groups)

At the end of the 4-week treatment period, individual overnight urine samples will be collected from all surviving animals of the main phase groups under conditions of food and water deprivation. Before starting urine collection, water bottles will be removed from each cage and each animal will receive approximately 10 ml/kg of drinking water by gavage, in order to obtain urine samples suitable for analysis.

On the same day, samples of blood will be withdrawn, prior to necropsy, under isofluorane anaesthesia from the abdominal vena cava from the same animals in the same conditions. During week 2 of the recovery period, blood and urine samples may also be taken (after consultation with the Sponsor) from all surviving animals under identical conditions in order to re-evaluate any parameters which showed treatment-related changes at measurements performed during the treatment period (additional cost).

Blood samples will be collected and analysed in the same order, a computer-generated random cage order being used.

The blood samples collected will be divided into tubes as follows:

EDTA anticoagulant

for haematological investigations

Heparin anticoagulant Citrate anticoagulant

for biochemical tests for coagulation tests

The measurements to be performed on blood and urine samples are listed below:

4.3.1 Haematology

Haematocrit

Haemoglobin

Red blood cell count

Reticulocyte count (if there are signs of anaemia)

Mean red blood cell volume

Mean corpuscular haemoglobin

Mean corpuscular haemoglobin concentration

White blood cell count

Differential leucocyte count - Neutrophils

- Lymphocytes
- Eosinophils
- Basophils
- Monocytes
- Large unstained cells

Abnormalities of the blood film

Platelets

Prothrombin time

4.3.2 Clinical chemistry

Alkaline phosphatase

Alanine aminotransferase

Aspartate aminotransferase

Gamma -glutamyltransferase

Urea

Creatinine

Glucose

Triglycerides

Phosphorus

Total bilirubin

Total cholesterol

Total protein

Albumin

Globulin

A/G Ratio

Sodium

Potassium

Calcium

Chloride

4.3.3 Urinalysis

Арреатапсе

Volume

Specific gravity

PH

Protein

Total reducing substances

Glucose

Ketones

Bilirubin

Urobilinogen

Blood

The sediment, obtained from centrifugation at approximately 3000 rpm for 10 minutes, will be examined microscopically for:

Epithelial cells
Poly morphonuclear leucocytes
Erythrocytes
Crystals
Spermatozoa and precursors
Other abnormal components

4.4 Toxicokinetics (Satellite group)

Blood samples will be collected at 9 points from the day of dosing, from all animals of the satellite group as indicated in following scheme:

Group	Treatment	Animal	Number	Time points
Number:	(mg/kg)	(Males)	(Females)	(hours)
		62, 64, 66	61,63,65	0, 4, 24
5	2.0	68, 70, 72	67, 69, 71	2, 8, 168
ľ		74, 76, 78	73, 75, 77	6, 48, 216

At each sampling time approximately 0.8 ml blood samples will be collected from the tail vein of each animal as indicated above. Samples will be transferred into tubes containing heparin anticoagulant, centrifuged and the plasma frozen at -20°C. Analysis of the samples will be carried out by the Analytical Chemistry Department of

Satellite group animals will be dosed once only and no necropsy will be performed on animals dying during the study or sacrificed at the end of the study. Surviving satellite group animals will be killed at the end of the last bleeding procedure. No necropsy examination will be performed in these animals.

4.5 Terminal studies

4.5.1 Euthanasia

Animals in extremis or killed for humane reasons and those that have completed the scheduled test period will be killed with carbon dioxide. All animals of the main groups, including those found dead, will be subjected to necropsy, supervised by a pathologist, as detailed below.

4.5.2 Necropsy (Main groups)

The clinical history of the animal will be studied and a detailed post mortem examination will be conducted (including examination of the external surface and orifices).

Changes will be noted, the requisite organs weighed and the required tissue samples preserved in fixative and processed for histopathological examination (see sections 4.5.3 to 4.5.5).

4.5.3 Organ weights (Main groups)

From all animals completing the scheduled test period, the organs indicated in Annex 1 will be dissected free of fat and weighed.

The ratios of organ weight to body weight will be calculated for each animal.

At the discretion of the pathologist, organs may be weighed from animals dying or killed prior to terminal kill.

4.5.4 Tissues fixed and preserved (Main groups)

Samples of all the tissues listed in Annex 1 will be fixed and preserved in 10% buffered formol saline (except eyes which will be fixed in Davidson's fluid; and testes and epididymides which will be fixed in Bouin's solution and all preserved in 70% ethyl alcohol).

4.5.5 Histopathological examination

The tissues required for histopathological examination are listed in Annex 1. After dehydration and embedding in paraffin wax, sections of the tissues will be cut at 5 micrometre thickness and stained with haematoxylin and eosin.

If considered necessary, histological processing may be subcontracted to a GLP certified test site. In such cases, a protocol amendment will be issued, the Sponsor will be informed of the location of the test site and the complete address and name of the Principal Investigator will be presented in the final report.

In the first instance the examination will be restricted as detailed below:

- a) Tissues specified in Annex 1 from all animals in the control and high dose group killed after 4 weeks of treatment.
- b) Tissues specified in Annex 1 from all animals killed or dying during the treatment period.
- c) All abnormalities in all main groups.

The examination could then be extended to include, from all other animals killed after 4 weeks of treatment or 2 weeks of recovery those tissues in which there is any suspicion of treatment-related change at the high dose level.

All histopathological activities which cannot be foreseen before the start of the study (i.e. processing of all abnormalities, tissues of unscheduled deaths in the low, medium dose and recovery groups, target tissues in the low and medium dose) will incur an additional cost.

4.5.6 Photomicrographs

Representative photomicrographs may be taken of any treatment-related lesions. Other photomicrographs may be taken as required by the Sponsor.

5. ANALYSIS OF DATA

5.1 Presentation of data

The data will be summarised and presented in the form of tables or figures. Individual observations and findings for each animal will also be tabulated.

5.2 Statistics

For continuous variables the significance of the differences amongst group means will be assessed by Dunnett's test or a modified t test, depending on the homogeneity of data.

6. AMENDMENTS TO THE PROTOCOL

It is not intended to make any amendment to this protocol without authorisation by the Sponsor. However, in the event of difficulty in contacting the Sponsor and/or for humane reasons and/or for the protection of scientific integrity, the testing laboratory retain the right to take independent action.

7. REPORTING

7.1 Interim report

Any unexpected findings during the course of the study will be reported to the Sponsor's Monitoring Scientist immediately.

7.2 Final report

A draft report will be sent to the Sponsor. With the exception of the dated signature of scientists and other professional personnel, the draft report will contain all information and data included in the final report.

Comments made by the Sponsor may be incorporated into the draft, after which it will be issued as the final report.

The final report will include the information and data required by current internationally recognised regulations. One original unbound, one copy bound and a PDF version will be supplied.

7.3 Corrections or additions to the final report

Corrections or additions to the approved (i.e. signed) version of the final report will be in the form of an amendment by the Study Director.

8. RECORDS AND ARCHIVES

Full records will be maintained of all aspects of study conduct, together with results of all measurements and observations.

will retain all relevant computer stored data generated by electronic on-line capture in a manner fully compliant with Good Laboratory Practice. At the end of the specified period, these data may be despatched to the Sponsor in the original format. If requested, reformatting of these data on alternative media may be carried out and will incur an additional cost.

Prior to commencement of treatment and at each batch change a reserve sample of the test item will be taken and kept under the storage conditions of the bulk supply at the conditions of the bulk supply at the conditions of the bulk supply at the conditions of the bulk supply at the conditions of the bulk supply at the conditions of the bulk supply at the conditions of the bulk supply at the conditions of the bulk supply at the conditions of the conditions of the bulk supply at the conditions of the conditions of the bulk supply at the conditions of the bulk supply at the conditions of the conditi

The reserve sample(s) of the test item will be retained within the archives for a period of 10 years and then destroyed.

If relevant, biological samples obtained for analytical chemistry measurements or similar will be destroyed shortly after the issue of the Final Report, unless otherwise requested by the Sponsor.

All specimens other than the samples described above, raw data, records and documentation generated during the course of this study will be retained at . Archiving will be provided for a period of 3 years after which the Sponsor will be contacted for instructions regarding despatch or disposal of the material. As a further option, archiving space can be rented for an additional time.

The signed Final Protocol and the top copy of the Final Report will be despatched to an archive by the Sponsor.

9. QUALITY ASSURANCE

The phases of the study carried out at will be subjected to the following quality assurance procedures:

- the protocol will be inspected.
- all procedures relevant to the study will be inspected at intervals adequate to assure the integrity of the study.
- the report will be reviewed to assure that it accurately describes the methods and Standard Operating Procedures and that the results accurately reflect the raw data.

Periodic reports on these activities will be made to management and the Study Director. All raw data pertaining to the study will be available for inspection by the Sponsor's representative and regulatory authorities (following authorisation from the Sponsor).

10. LOCATION OF THE STUDY

11. PROJECTED TIME PLAN

Date

1. Start of treatment : End of March 2005

2. End of in vivo phase : Mid May 2005

3. End of histopathological examination : First half of June 2005

4. QAU audited draft report to Sponsor : 3.5 months after the first day of treatment

ANNEX 1. TISSUE PROCESSING

Organs / Tissues	Weight	Fixation Preservation	Microscopio Examination
Abnormalities		1 reservation	- Iskanimation
Adrenal glands	✓	· /	√
Bone marrow (from sternum)	·		· /
Brain	✓	· /	/
Caecum	·	· /	✓
Colon		· /	✓
Duodenum		√	✓
Epididymides	✓	√	√
Eyes		√	*
Heart	✓	/	✓
Ileum (including Peyer's patches)		✓ ·	1
Jejunum		✓	✓
Kidneys	✓	√	✓
Liver	1	1	✓
Lungs (including mainstem bronchi)		✓	✓
Lymph nodes - cervical		✓	✓
Lymph nodes - mesenteric		✓	✓
Ovaries	✓	✓	✓
Oviducts*		✓	✓
Parathyroid glands ^b		✓	✓
Pituitary gland		✓	✓
Prostate gland		✓	✓
Rectum		✓	✓
Sciatic nerve		✓	✓
Seminal vesicles		✓	✓
Spinal column		✓	*
Spinal cord		✓	✓
Spleen	✓	✓	✓
Stomach		✓	✓
Testes	✓	✓	✓
Thymus (where present)	✓	✓	✓
Thyroid	✓	✓	✓
Trachea		✓	✓
Urinary bladder		✓	✓
Uterus - cervix		✓	✓

^{*:} to be examined if indicated by signs of toxicity or target organ involvement.

a: weighed and preserved with ovariesb: weighed and preserved with thyroid gland

ANNEX 2. GROUP AND CAGE ARRANGEMENT ON BATTERY

MAIN PHASE

Treatment	Level	Rat numbers		Cage number	
(mg/kg/day)+		M F		M	F
<u> </u>		(even)	(odd)		ł
0.0	Control	2 - 10	1-9	1	7
0.3	Low	22 - 30	21 - 29	3	9
0.8	Medium	32 - 40	31 - 39	4	10
2.0	High	42 - 50	41 - 49	5	11
	0.0 0.3 0.8	(mg/kg/day)+ 0.0 Control 0.3 Low 0.8 Medium	(mg/kg/day)+ M 0.0 Control 2 - 10 0.3 Low 22 - 30 0.8 Medium 32 - 40	(mg/kg/day)+ M (even) F (odd) 0.0 Control 2 - 10 1 - 9 0.3 Low 22 - 30 21 - 29 0.8 Medium 32 - 40 31 - 39	(mg/kg/day)+ M (even) F (odd) M 0.0 Control 2 - 10 1 - 9 1 0.3 Low 22 - 30 21 - 29 3 0.8 Medium 32 - 40 31 - 39 4

RECOVERY PHASE

Treatment	Level	Rat numbers		Cage numbers		
(mg/kg/day)+	ļ	M	F	M	F	
.	l	(even)	(odd)		l	
0.0	Control	12 - 20	11 - 19	2	8	
2.0	High	52 - 60	51 - 59	6	12	
	(mg/kg/day)+ 0.0	(mg/kg/day)+ 0.0 Control	(mg/kg/day)+	(mg/kg/day)+	(mg/kg/day)+	

SATELLITE GROUP

		OWIEI	WITH OW	001		
Group	Treatment	Level Rat numbers Cage numb		Rat numbers		umbers
Number:	(mg/kg/day)+		M	F	M	F
	.		(even)	(odd)		
5	2.0	High	62 - 78	61 - 77	13-15	17-19
+: in terms of to	est item as supplie	d				

Group/Sex	
Cage no.	_

= To be inserted in the final report

o: No treatment will be given during the recovery period.

PROTOCOL APPROVAL PAGE

STUDY TITLE

4-WEEK ORAL TOXICITY STUDY IN RATS FOLLOWED BY A 2

WEEK RECOVERY PERIOD

TEST FACILITY

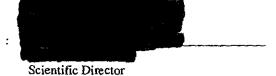
RTC ENQUIRY NO.

TEST ITEM

APPROVED BY

15- Har- 2005 Date

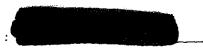
Study Director


APPROVED BY

15- Her- 2005

Date

RELEASED BY


15 Mar 2005 Date

SPONSOR

AUTHORISED BY

SPONSOR*

18/03/2005 Date

Name and Title

INDUSTRIAL TOXICOLOGY

* Please print or type your name and company status below your signature.

4-WEEK ORAL TOXICITY STUDY IN RATS FOLLOWED BY A 2 WEEK RECOVERY PERIOD

ADDENDUM VII - Clinical pathology report

STUDY NO.:

Haematology

A decrease in white blood cell was observed in the high dose animals (approximately 19%) and in the mid-dose females (approximately 17%) at the end of the treatment period. This reduction was still evident at the end of the recovery period (11% and 16% in females and males respectively). The decrement comprised both the lymphocytes and the neutrophils in the males, which had 29%, 19% and 39% less neutrophils at the high, medium and low dose, respectively. Such an evident decrement was not observed in the females.

In addition, the prothrombin time was slightly increased in high dose males (14%). This could reflect the alteration in hepatic functions as indicated by the clinical chemistry results. This change showed a trend for recovery at the end of treatment-free period, when an increase of 8% was observed.

The other differences observed in the haematological parameters (RBC, HGB, HCT, MCHC) were considered to be incidental and of no toxicological significance, since they were observed only during the recovery phase and no other alterations in the same haematological parameters were observed during the treatment period.

Clinical Chemistry

The statistically significant changes in clinical chemistry parameters are summarized below:

Parameters	2M	3M	4M	4M Rec	2F	3F	4F	4F Rec
AP		+18%	+33%	+41%				
ALT		+309%	+219%]			ī
AST		+58%	+61%					-29%
BILT			1+70%		[-60%	-33%	-37%
CHOL	-34%	-23%	1	+76%		-		7
GLU	Ī —		1		1	7	+20%	+31%
TRI	1	-51%	1	-45%				-27%
Urea		7	+48%	+35%			+24%	
Crea			Ţ	-34%			-15%	-35%
Prot	-9%		-16%	-11%				
Alb]		-13%					+9%
Gio	-14%	-11%	-23%	-26%	,			
A/G Ratio	1						+17%	+20%
CI			+2%				+2%	-1%
Phos		-9%	-21%				-9%	-7%
Na		+4%		-2%				-2%
K	L							+12%

Changes observed at the clinical chemistry investigations performed during week 4 of treatment revealed alteration of liver function in the high dose males and, to a lesser extent, in two mid-dose males (increases in hepatic markers alkaline phosphatase, alanine aminotransferase, aspartate aminotransferase and total bilirubin, decrements of protein, globulin and albumin). These changes were generally dose related (from approximately 20% to approximately 3 fold) and in some high dose animals values were outside the range of historical data.

The above mentioned changes could reflect an alteration in the hepatic function.

A reversibility of these changes was observed for the aminotransferase enzymes at the clinical pathology performed during week 2 of recovery.

No significant hepatic marker alterations were observed in females.

Urea plasma levels were increased in high dose animals, while creatinine and inorganic phosphorus showed a decrement in the same group. At the end of the recovery period, no complete reversibility of such changes was observed. The cause of these changes however remains unclear and could not be conclusively attributed to the test item.

In addition, changes of chloride and sodium serum levels were insufficient in magnitude to be of biological significance.

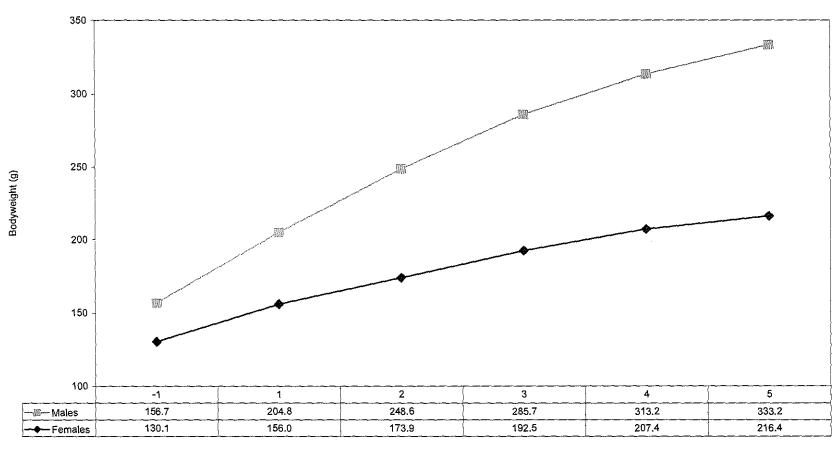
The other alterations observed during the recovery period in both sexes were considered to be incidental and of no toxicological significance.

Urinalysis

No alterations in urine were observed which could be attributed to treatment.

Study Clinical Pathologist

date: 19 December 2005


4-WEEK ORAL TOXICITY STUDY IN RATS FOLLOWED BY A 2 WEEK RECOVERY PERIOD

ADDENDUM VIII - Historical control data

STUDY NO.:

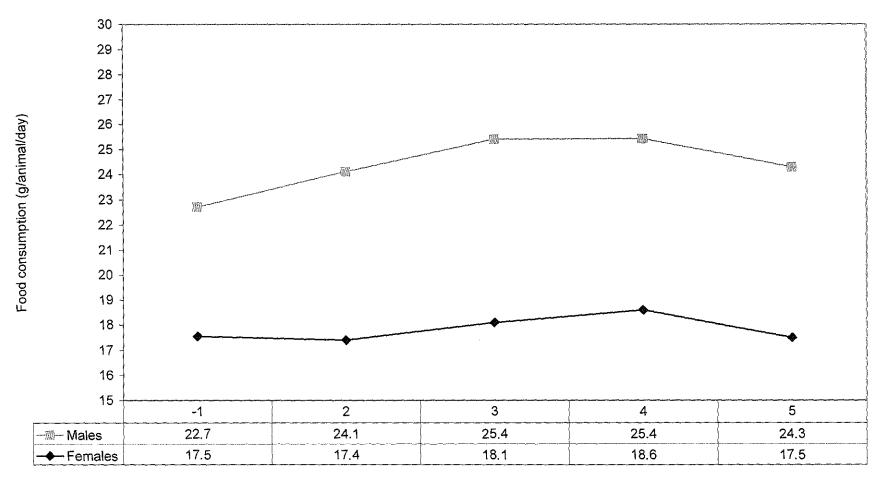


Fig. 1: 4 week Studies - Bodyweight - Both sexes

Week number

Fig. 2: 4 week Studies - Food consumption - Both sexes

Week number

Fig. 3: 4 week Studies - Haematology - Males

Parameter	Units	No.	Maximum	Minimum	Mean	Std Dev
Haemoglobin	g/dl	152	17.9	13.4	16.1	0.7
Red Blood Cell Count	10^12/1	152	9.1	7.1	8.4	0.4
Haematocrit	%	152	53.2	39.0	47.8	2.4
Mean Corpuscular Hb	pg	152	20.4	17.8	19.0	0.5
Mean Corpusc. Hb conc.	g/dl	152	36.5	31.4	33.6	1.1
Mean Red Blood Cell Vol.	fl	152	61.1	51.1	56.7	1.8
White Blood Cell Count	10^9/1	152	21.5	8.1	12.9	2.4
Neutrophils	%	152	57.0	5.2	11.3	5.3
Lymphocytes	%	152	91.9	37.4	83.1	5.4
Monocytes	%	152	5.7	1.1	2.5	0.8
Eosinophils	%	152	6.8	0.3	1.3	0.7
Basophils	%	152	0.6	0.1	0.3	0.1
Large Unstained Cells	%	152	2.8	0.5	1.4	0.4
Platelets	10^9/1	151	1413.0	370.0	1028.8	153.0
Prothrombin Time	sec.	75	18.2	10.4	13.0	1.3

Fig. 4: 4 week Studies - Haematology - Females

Parameter	Units	No.	Maximum	Minimum	Mean	Std Dev
Haemoglobin	g/dl	161	16.8	11.5	15.3	0.7
Red Blood Cell Count	10^12/1	161	8.9	6.4	8.0	0.4
Haematocrit	%	161	49.6	33.9	44.4	2.4
Mean Corpuscular Hb	pg	161	20.9	17.6	19.1	0.6
Mean Corpusc, Hb conc.	g/dl	161	37.7	31.2	34.5	1.4
Mean Red Blood Cell Vol.	fl	161	60.2	51.5	55.4	1.8
White Blood Cell Count	10^9/1	161	15.4	3.7	8.8	2.2
Neutrophils	%	161	27.1	5.0	10.9	4.3
Lymphocytes	%	161	91.3	66.8	83.7	4.6
Monocytes	%	161	4.4	0.7	2.3	0.8
Eosinophils	%	161	4.6	0.5	1.7	0.6
Basophils	%	161	0.5	0.0	0.2	0.1
Large Unstained Cells	%	161	2.2	0.5	1.2	0.4
Platelets	10^9/1	161	1427.0	458.0	1065.7	141.5
Prothrombin Time	sec.	77	15.4	11.2	13.1	1.0

Fig. 5: 4 week Studies - Serum Chemistry - Males

Parameter	Units	No.	Maximum	Minimum	Mean	Std Dev
Albumin/Globulin ratio		37	1.1	0.5	1.0	0.1
Albumin	g/dl	82	4.4	2.4	3.5	0.4
Alanine Amino-Transferase	U/I	162	78.0	19.1	44.8	11.4
Alkaline Phosphatase	U/I	162	769.7	162.3	340.6	113.5
Aspartate Amino-Transferase	U/I	162	215.3	38.4	92.6	31.3
Total Bilirubin	mg/dl	162	0.3	0.0	0.1	0.0
Calcium	mmol/l	162	3.0	2.3	2.6	0.1
Total Cholesterol	mg/dl	162	561.6	67.3	105.2	40.1
Chloride	mmol/l	162	106.6	87.7	96.3	3.9
Creatinine	mg/dl	162	0.8	0.3	0.5	0.1
Gamma-Glutamyl Transferase	U/l	22	3.2	0.0	1.2	0.9
Globulin	g/dl	37	4.7	2.9	3.5	0.3
Glucose	mg/dl	162	166.3	59.8	113.2	21.3
Potassium	mmol/l	162	5.8	2.8	3.9	0.5
Sodium	mmol/l	161	170.4	132.1	146.6	9.0
Inorganic Phosphorus	mg%P	22	8.8	6.5	7.8	0.7
Total Protein	g/dl	162	7.5	5.8	6.8	0.4
Triglycerides	mg/dl	15	56.6	25.7	42.2	10.4
Urea	mg/dl	162	88.1	18.5	41.1	10.3

Fig. 6: 4 week Studies - Serum Chemistry - Females

Parameter	Units	No.	Maximum	Minimum	Mean	Std Dev
Albumin/Globulin ratio		37	1.2	1.0	1.1	0.1
Albumin	g/dl	82	4.7	3.2	3.8	0.4
Alanine Amino-Transferase	U/I	162	52.5	13.5	34.1	8.7
Alkaline Phosphatase	U/I	162	769.8	90.5	248.4	99.5
Aspartate Amino-Transferase	U/I	162	144.7	29.5	78.2	20.2
Total Bilirubin	mg/dl	162	0.2	0.0	0.1	0.0
Calcium	mmol/l	162	2.8	2.3	2.6	0.1
Total Cholesterol	mg/dl	162	363.6	49.2	98.5	29.4
Chloride	mmol/l	162	105.5	81.5	97.5	4.5
Creatinine	mg/dl	162	0.8	0.3	0.6	0.1
Gamma-Glutamyl Transferase	U/I	22	1.2	0.1	0.6	0.3
Globulin	g/dl	37	3.6	3.0	3.3	0.2
Glucose	mg/dl	162	219.8	35.1	109.3	21.8
Potassium	mmol/l	162	4.8	2.8	3.6	0.4
Sodium	mmol/l	162	168.3	132,4	145.9	8.6
Inorganic Phosphorus	mg%P	22	8.3	6.7	7.5	0.5
Total Protein	g/dl	162	7.8	5.7	6.8	0.4
Triglycerides	mg/dl	15	65.1	20.0	36.6	15.5
Urea	mg/dl	162	85.5	19.3	47.4	10.2

Fig. 7: 4 week Studies - Urinalysis - Males

Parameter	Units	No.	Maximum	Minimum	Mean	Std Dev
Specific Gravity)	108	1.06	1.01	1.03	0.01
Urine Volume	ml	128	12.50	1.50	4.91	2.05

Fig. 8: 4 week Studies - Urinalysis - Females

Parameter	Units	No.	Maximum	Minimum	Mean	Std Dev
Specific Gravity		107	1.05	1.01	1.03	0.01
Urine Volume	ml	95	13.00	1.00	4.49	2.61

Fig. 9: 4 week Studies - Terminal Bodyweight - Males

TBW	No.	Maximum	Minimum	Mean	Std Dev
TBW	151	398.8	274.1	332.8	26.1

Fig. 10: 4 week Studies - Terminal Bodyweight - Females

TBW	No.	Maximum	Minimum	Mean	Std Dev
TBW	152	263.8	182.3	217.0	15.2

Fig. 11: 4 week Studies - Relative Organ Weights - Males (% of bodyweight)

Organ	No.	Maximum	Minimum	Mean	Std Dev
Adrenals	162	0.024	0.011	0.016	0.002
Brain	161	0.750	0.447	0.530	0.042
Epididymides	75	0.438	0.252	0.313	0.034
Heart	162	0.453	0.339	0.387	0.023
Kidneys	162	1.492	0.660	0.792	0.077
Liver	162	7.544	3.320	4.523	0.542
Pituitary	107	0.004	0.002	0.003	0.000
Spleen	162	0.368	0.157	0.252	0.029
Testes	162	1.448	0.912	1.110	0.082
Thymus	65	0,222	0.071	0.148	0.032
Thyroid	107	0.011	0.004	0.007	0.001

Fig. 12: 4 week Studies - Relative Organ Weights - Females (% of bodyweight)

Organ	No.	Maximum	Minimum	Mean	Std Dev
Adrenals	161	0.039	0.021	0.029	0.003
Brain	161	0.879	0.638	0.747	0.050
Heart	161	0.478	0.361	0.412	0.024
Kidneys	161	1.290	0.592	0.766	0.070
Liver	161	7.220	3.350	4.100	0.416
Ovaries	151	0.055	0.019	0.038	0.006
Pituitary	106	0.008	0.003	0.005	0.001
Spleen	161	0.427	0.254	0.322	0.034
Thymus	64	0.221	0.087	0.152	0.027
Thyroid	106	0.015	0.003	0.009	0.002
Uterus	116	0.569	0.108	0.194	0.065

Fig. 13: 4 week Studies - Microscopic Pathology - Males

Organs/Tissues	Number Examined	Diagnoses	Incidence Observed	
Cervical nodes	136	REACTIVE HYPERPLASIA	17	12.50%
Colon	137	DISTENSION	7	5.11%
Duodenum	137	VILLOUS NECROSIS	1	0.73%
Eyes	87	ACUTE INFLAMMATION	1	1.15%
	87	HAEMORRHAGE	1	1.15%
Harderian glands	87	CHRONIC INFLAMMATION	22	25.29%
	87	PORPHYRIN ACCUMULATION	1	1.15%
Heart	157	CHRONIC INFLAMMATION	30	19.11%
lleum	137	DISTENSION	1	0.73%
Kidneys	157	CHRONIC INFLAMMATION	9	5.73%
	157	CHRONIC PROGRESSIVE NEPHROSIS	12	7.64%
	157	CORTICAL TUBULAR CELL BASOPHILIA	44	28.02%
	157	CORTICAL TUBULAR DILATATION	37	23.57%
	157	HYALINE CASTS	5	3.18%
	157	HYDRONEPHROSIS	1	0.64%
Liver	157	BILE DUCT PROLIFERATION	2	1.27%
	157	CENTRILOBULAR HEPATOCYTIC VACUOLATION	2	1.27%
	157	CHRONIC INFLAMMATION	65	41.40%
	157	CLEAR CELL CHANGE	13	8.28%
Lungs	157	AGGREGATIONS OF ALVEOLAR MACROPHAGES	13	8.28%
	157	ALVEOLAR HAEMORRHAGE	21	13.38%
	157	CHRONIC INFLAMMATION	104	66.24%
	157	EOSINOPHIL INFILTRATION	3	1.91%
	157	FRAGMENTS OF BONE	1	0.64%
	157	HAIR EMBOLUS	1	0.64%
	157	OEDEMA	4	2.55%
	157	PERIBRONCHIAL LYMPHOID HYPERPLASIA	21	13.38%
	157 157	PNEUMONIA VASCULAR MINERALIZATION	3 7	1.91% 4.46%
	157	Wilder Hamilton Clark Trans	,	4.40 /0
Lymph nodes	10	HAEMORRHAGE	2	20.00%
	10	REACTIVE HYPERPLASIA	2	20.00%
Mesenteric nodes	137	REACTIVE HYPERPLASIA	1	0.73%
Pancreas	87	CYSTIC CHANGE	1	1.15%
	87	EOSINOPHIL INFILTRATION	1	1.15%
Pituitary	86	DEVELOPMENTAL CYST/S	1	1.16%

Prostate	147	CHRONIC INFLAMMATION	15	10.20%
	147	OEDEMA	1	0.68%
Rectum	137	DISTENSION	2	1.46%
Seminal vesicles	70	COLLOID DISTENSION	10	14.29%
Stomach	137	CHRONIC INFLAMMATION	2	1.46%
	137	SQUAMOUS METAPLASIA OF MUCOSAL GLANDS	1	0.73%
Testes	157	SEMINIFEROUS TUBULES ATROPHY	1	0.64%
	157	TUBULAR GIANT CELLS	1	0.64%
Thymus	137	HAEMORRHAGE	2	1.46%
Thyroid	137	ECTOPIC THYMIC TISSUE	4	2.92%
Trachea	137	CHRONIC INFLAMMATION	1	0.73%
Urinary bladder	137	DISTENSION	3	2.19%
	137	PROTEINACEOUS PLUG	8	5.84%

Fig. 14: 4 week Studies - Microscopic Pathology - Females

Organs/Tissue	Number Examined	l Diagnoses	Incidence Observed	%
Brain	157	HYDROCEPHALUS	1	0.64%
Cervical nodes	136	REACTIVE HYPERPLASIA	11	8.09%
Colon	137	DISTENSION	5	3.65%
	137	LYMPHOID HYPERPLASIA	1	0.73%
Eyes	87	ACUTE INFLAMMATION	1	1.15%
	87	CATARACT	1	1.15%
	87	DETACHMENT OF RETINA	1	1.15%
	87	KERATITIS	2	2.30%
Harderian glands	87	CHRONIC INFLAMMATION	16	18.40%
	87	HAEMORRHAGE	1	1.15%
Heart	157	CHRONIC INFLAMMATION	7	4.46%
lleum	137	LYMPHOID HYPERPLASIA	2	1.46%
Jejunum	137	LYMPHOID HYPERPLASIA	2	1.46%
Kidneys	157	CHRONIC INFLAMMATION	8	5.10%
	157	CHRONIC PROGRESSIVE NEPHROSIS	1	0.64%
	157	CORTICAL TUBULAR CELL BASOPHILIA	8	5.10%
	157	CORTICAL TUBULAR DILATATION	4	2.54%
	157	CORTICAL CYST	1	0.64%
	157	HYALINE CASTS	1	0.64%
	157	HYDRONEPHROSIS	2	1.27%
	157	MINERALIZATION	36	22.92%
	157	PELVIC EPITHELIAL HYPERPLASIA	3	1.91%
Liver	157	CHRONIC INFLAMMATION	65	41.40%
	157	HAEMORRHAGE	1	0.64%
	157	HEPATOCYTIC NECROSIS	2	1.27%
	157	CLEAR CELL CHANGE	6	3.82%
Lungs	157	AGGREGATIONS OF ALVEOLAR MACROPHAGES	11	7.01%
	157	ALVEOLAR EPITHELIALIZATION	2	1.27%
	157	ALVEOLAR HAEMORRHAGE	14	8.92%
	157	CHRONIC INFLAMMATION	99	63.05%
	157	EMPHYSEMA	1	0.64%
	157	EOSINOPHILIC INFILTRATION	1	0.64%
	157	FRAGMENTS OF BONE	1	0.64%
	157	HAIR EMBOLUS	2	1.27%
	157	OEDEMA	4	2.55%
	157	PERIBRONCHIAL LYMPHOID HYPERPLASIA	21	13.38%
	157	PNEUMONIA	16	10.19%
	157	VASCULAR MINERALIZATION	3	1.91%

Lymph nodes	10	HAEMORRHAGE	1	10.00%
	10	REACTIVE HYPERPLASIA	4	40.00%
Ovaries	157	LUTEIN CYST	2	1.27%
	157	MINERALIZZATION	1	0.64%
Parathyroid glands	71	BRANCHIAL CYST/S	1	1.41%
Pituitary	86	DEVELOPMENTAL CYST/S	3	3.49%
Rectum	137	ACUTE INFLAMMATION	. 1	0.73%
	137	DISTENSION	2	1.46%
	137	LYMPHOCYTIC INFILTRATION	1	0.73%
	137	LYMPHOID HYPERPLASIA	11,	0.73%
Skeletal muscle	87	CHRONIC INFLAMMATION	1	1.15%
Skin	87	KERATIN CYST	. 1	1.15%
Spinal cord	136	EPIDERMOID INCLUSION CYST/S	1	0.74%
Spleen	157	CONGENITAL ABNORMALITY	1	0.64%
Stomach	137	SQUAMOUS METAPLASIA OF MUCOSAL GLANDS	1	0.73%
	137	ECTOPIC THYROID TISSUE	1	0.73%
	137	HAEMORRHAGE	1	0.73%
Thyroid	137	ECTOPIC THYMIC TISSUE	5	3.65%
Tongue	87	CYST/S	1	1.15%
Urinary bladder	137	EPITHELIAL HYPERPLASIA	1	0.73%
Uterus	137	ENDOMETRIAL CYST	1	0.73%
	137	GLANDULAR DILATATION	1	0.73%
·	137	HYDROMETRA	9	6.57%